Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades
Abstract
:1. Introduction
1.1. Data Collected for This Review
1.2. Scholarly Attention on Remote Sensing in Urban Studies
2. Gregarious People, Compact Lands, and the Development of Cities
3. Remote Sensing and the Advancement of Urban Science
3.1. Remote Sensing and Its Application to Urban Studies
3.1.1. Extracting and Analyzing Physical Environments of Urban Areas
3.1.2. Morphological Analysis of Urban Landscapes
3.1.3. Deducing Demographic, Social and Economic Characteristics of Cities
3.2. Social Sensing—A New Frontier of Remote Sensing and Interface with “Big Data” Semantics
3.3. Limitations and Challenges of Remote Sensing in Urban Science
4. The Emergence of Big Data Thinking, and How Big Data Supports Urban Studies/Science
4.1. The Big Data Era
4.2. Big Data Thinking
4.3. Big Data Supported Urban Studies/Science
4.4. Big Data Facilitated Urban and Rural Integrated Development
4.5. Limitations and Challenges of Applying Spatial Big Data in Urban Studies/Science
5. Analyzing the New Data: Spatiotemporal Big Data Analytics and Bayesian Hierarchical Approaches
5.1. Spatial and Spatiotemporal Models
5.2. Bayesian Hierarchical Spatiotemporal Analysis
6. Future Research Direction
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batty, M.; Xie, Y.C. Self-organized criticality and urban development. Discret. Dyn. Nat. Soc. 1999, 3, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Geoghegan, J. The value of open spaces in residential land use. Land Use Pol. 2002, 19, 91–98. [Google Scholar] [CrossRef]
- Liu, J.G.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef] [Green Version]
- Chen, G. China’s Urban Space: Development under Market Socialism. J. Reg. Sci. 2009, 49, 585–587. [Google Scholar]
- Song, J. Space to maneuver: Collective strategies of indigenous villagers in the urbanizing region of northwestern China. Eurasian Geogr. Econ. 2014, 55, 362–380. [Google Scholar] [CrossRef]
- Flores, A.; Pickett, S.T.A.; Zipperer, W.C.; Pouyat, R.V.; Pirani, R. Adopting a modern ecological view of the metropolitan landscape: The case of a greenspace system for the New York City region. Landsc. Urban Plan. 1998, 39, 295–308. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Casanova, J.L. Land use mapping methodology using remote sensing for the regional planning directives in Segovia, Spain. Landsc. Urban Plan. 2003, 62, 103–115. [Google Scholar] [CrossRef]
- van Kamp, I.; Leidelmeijer, K.; Marsman, G.; de Hollander, A. Urban environmental quality and human well-being-Towards a conceptual framework and demarcation of concepts; a literature study. Landsc. Urban Plan. 2003, 65, 7–20. [Google Scholar]
- He, C.Y.; Okada, N.; Zhang, Q.F.; Shi, P.J.; Zhang, J.S. Modeling urban expansion scenarios by coupling cellular automata model and system dynamic model in Beijing, China. Appl. Geogr. 2006, 26, 323–345. [Google Scholar] [CrossRef]
- Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 2006, 79, 460–487. [Google Scholar] [CrossRef]
- Tang, J.M.; Wang, L.; Yao, Z.J. Analyzing urban sprawl spatial fragmentation using multi-temporal satellite images. Gisci. Remote Sens. 2006, 43, 218–232. [Google Scholar] [CrossRef] [Green Version]
- Mok, J.H.; Landphair, H.C.; Naderi, J.R. Landscape improvement impacts on roadside safety in Texas. Landsc. Urban Plan. 2006, 78, 263–274. [Google Scholar] [CrossRef]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, N.B.; Foster, D.; Groffman, P.; Grove, J.M.; Hopkinson, C.S.; Nadelhoffer, K.J.; Pataki, D.E.; Peters, D.P.C. The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 2008, 6, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Troy, A. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 2008, 29, 3119–3135. [Google Scholar] [CrossRef]
- Rayburn, A.R.; Schulte, L.A. Landscape change in an agricultural watershed in the US Midwest. Landsc. Urban Plan. 2009, 93, 132–141. [Google Scholar] [CrossRef]
- Lu, D.S.; Hetrick, S.; Moran, E.; Li, G.Y. Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images. J. Appl. Remote Sens. 2010, 4, 041880. [Google Scholar] [CrossRef] [Green Version]
- Bergerot, B.; Fontaine, B.; Julliard, R.; Baguette, M. Landscape variables impact the structure and composition of butterfly assemblages along an urbanization gradient. Landsc. Ecol. 2011, 26, 83–94. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Liu, Y.; Hu, Y.n. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Fu, B.; Yu, D.L.; Zhang, Y.J. The livable urban landscape: GIS and remote sensing extracted land use assessment for urban livability in Changchun Proper, China. Land Use Pol. 2019, 87, 11. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Potere, D. Global analysis and simulation of land-use change associated with urbanization. Landsc. Ecol. 2010, 25, 657–670. [Google Scholar] [CrossRef]
- Cao, G.Y.; Chen, G.; Pang, L.H.; Zheng, X.Y.; Nilsson, S. Urban growth in China: Past, prospect, and its impacts. Popul. Environ. 2012, 33, 137–160. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Vogt, N.D.; Mansur, A.V.; Anthony, E.J.; Costa, S.; Hetrick, S. A conceptual framework for analyzing deltas as coupled social-ecological systems: An example from the Amazon River Delta. Sustain. Sci. 2016, 11, 591–609. [Google Scholar] [CrossRef]
- Atkins, M.T.; Tonts, M. Exploring Cities through a Population Ageing Matrix: A spatial and temporal analysis of older adult population trends in Perth, Australia. Aust. Geogr. 2016, 47, 65–87. [Google Scholar] [CrossRef]
- Qin, M.; Brown, J.J.; Padmadas, S.S.; Li, B.H.; Qi, J.A.; Falkingham, J. Gender inequalities in employment and wage-earning among internal labour migrants in Chinese cities. Demogr. Res. 2016, 34, 175–202. [Google Scholar]
- Song, Q. Aging and separation from children: The health implications of adult migration for elderly parents in rural China. Demogr. Res. 2017, 37, 1761–1792. [Google Scholar] [CrossRef] [Green Version]
- Mansour, S. Spatial concentration patterns of South Asian low-skilled immigrants in Oman: A spatial analysis of residential geographies. Appl. Geogr. 2017, 88, 118–129. [Google Scholar] [CrossRef]
- Salvati, L. Population growth and the economic crisis: Understanding latent patterns of change in Greece, 2002-2016. Lett. Spat. Resour. Sci. 2018, 11, 105–126. [Google Scholar] [CrossRef]
- Chow, T.E.; Schuermann, R.T.; Ngu, A.H.; Dahal, K.R. Spatial mining of migration patterns from web demographics. Int. J. Geogr. Inf. Sci. 2018, 32, 1977–1998. [Google Scholar] [CrossRef]
- Yucer, E.; Erener, A. Examining Urbanization Dynamics in Turkey Using DMSP-OLS and Socio-Economic Data. J. Indian Soc. Remote Sens. 2018, 46, 1159–1169. [Google Scholar] [CrossRef]
- Fox, S.; Bloch, R.; Monroy, J. Understanding the dynamics of Nigeria’s urban transition: A refutation of the “stalled urbanisation’ hypothesis. Urban Stud. 2018, 55, 947–964. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.J. THE IMPACT OF URBAN SPRAWL ON SOCIAL SEGREGATION IN BEIJING AND A LIMITED ROLE FOR SPATIAL PLANNING. Tijdschr. Econ. Soc. Geogr. 2013, 104, 571–587. [Google Scholar] [CrossRef]
- Chester, M.V.; Sperling, J.; Stokes, E.; Allenby, B.; Kockelman, K.; Kennedy, C.; Baker, L.A.; Keirstead, J.; Hendrickson, C.T. Positioning infrastructure and technologies for low-carbon urbanization. Earths Future 2014, 2, 533–547. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, M.L.; Sarkis, J.; Xue, B.; Zhang, L.; Fujita, T.; Yu, X.M.; Ren, W.X.; Zhang, L.M.; Dong, H. Spatial-temporal patterns and driving factors for industrial wastewater emission in China. J. Clean. Prod. 2014, 76, 116–124. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, Y.; Huang, H.X. An Empirical Analysis of the Coupling Coordination among Decomposed Effects of Urban Infrastructure Environment Benefit: Case Study of Four Chinese Autonomous Municipalities. Math. Probl. Eng. 2016, 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Colak, S.; Lima, A.; Gonzalez, M.C. Understanding congested travel in urban areas. Nat. Commun. 2016, 7, 10793. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Dong, L.; Dou, Y.; Zhang, N.; Ren, J.Z.; Li, Y.; Sun, L.; Yao, S.Y. Analysis on spatial-temporal features of taxis’ emissions from big data informed travel patterns: A case of Shanghai, China. J. Clean. Prod. 2017, 142, 926–935. [Google Scholar] [CrossRef]
- Endreny, T.A. Storm water management for society and nature via service learning, ecological engineering and ecohydrology. Int. J. Water Resour. Dev. 2004, 20, 445–462. [Google Scholar] [CrossRef]
- Jim, C.Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Ager, A.A.; Valliant, N.M.; Finney, M.A. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For. Ecol. Manag. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Guan, D.J.; Gao, W.J.; Su, W.C.; Li, H.F.; Hokao, K. Modeling and dynamic assessment of urban economy-resource-environment system with a coupled system dynamics-geographic information system model. Ecol. Indic. 2011, 11, 1333–1344. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.G.; Grimm, N.B.; McHale, M.; Buyantuyev, A. A hierarchical patch mosaic ecosystem model for urban landscapes: Model development and evaluation. Ecol. Model. 2013, 250, 81–100. [Google Scholar] [CrossRef]
- Qureshi, S.; Breuste, J.H.; Jim, C.Y. Differential community and the perception of urban green spaces and their contents in the megacity of Karachi, Pakistan. Urban Ecosyst. 2013, 16, 853–870. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Li, J.; Zhang, W. Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone. Environ. Sci. Pollut. Res. 2016, 23, 15407–15417. [Google Scholar] [CrossRef]
- Ai, J.Y.; Feng, L.; Dong, X.W.; Zhu, X.D.; Li, Y.F. Exploring coupling coordination between urbanization and ecosystem quality (1985-2010): A case study from Lianyungang City, China. Front. Earth Sci. 2016, 10, 527–545. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.C.; Lin, Z.L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Maimaiti, B.; Chen, S.S.; Kasimu, A.; Simayi, Z.; Aierken, N. Urban spatial expansion and its impacts on ecosystem service value of typical oasis cities around Tarim Basin, northwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102554. [Google Scholar] [CrossRef]
- Ameen, R.F.M.; Mourshed, M. Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustain. Cities Soc. 2019, 44, 356–366. [Google Scholar] [CrossRef]
- Sharifi, A. A critical review of selected smart city assessment tools and indicator sets. J. Clean. Prod. 2019, 233, 1269–1283. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, L.Y.; Zhang, Y.; Li, H.; Ren, Y.T. Sustainability based perspective on the utilization efficiency of urban infrastructure-A China study. Habitat Int. 2019, 93, 17. [Google Scholar] [CrossRef]
- Cui, X.G.; Fang, C.L.; Liu, H.M.; Liu, X.F. Assessing sustainability of urbanization by a coordinated development index for an Urbanization-Resources-Environment complex system: A case study of Jing-Jin-Ji region, China. Ecol. Indic. 2019, 96, 383–391. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J.H. Big spatial data for urban and environmental sustainability. Geo-Spat. Inf. Sci. 2020, 23, 125–140. [Google Scholar] [CrossRef]
- Wu, C.H.; Maurer, C.; Wang, Y.; Xue, S.Z.; Davis, D.L. Water pollution and human health in China. Environ. Health Perspect. 1999, 107, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Dye, C. Health and urban living. Science 2008, 319, 766–769. [Google Scholar] [CrossRef]
- Wong, C.M.; Ou, C.Q.; Chan, K.P.; Chau, Y.K.; Thach, T.Q.; Yang, L.; Chung, R.Y.N.; Thomas, G.N.; Peiris, J.S.M.; Wong, T.W.; et al. The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. Environ. Health Perspect. 2008, 116, 1189–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penrose, K.; de Castro, M.C.; Werema, J.; Ryan, E.T. Informal Urban Settlements and Cholera Risk in Dar es Salaam, Tanzania. PLoS Neglect. Trop. Dis. 2010, 4, 11. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Bittles, A.H.; Black, M.L. Consanguinity, human evolution, and complex diseases. Proc. Natl. Acad. Sci. USA 2010, 107, 1779–1786. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Sabel, C.E.; Lu, X.; Zhu, W.M.; Kan, H.D.; Nielsen, C.P.; Wang, H.K. Long-term trend and spatial pattern of PM2.5 induced premature mortality in China. Environ. Int. 2016, 97, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Su, S.L.; Zhang, Q.W.; Pi, J.H.; Wan, C.; Weng, M. Public health in linkage to land use: Theoretical framework, empirical evidence, and critical implications for reconnecting health promotion to land use policy. Land Use Pol. 2016, 57, 605–618. [Google Scholar] [CrossRef]
- Petric, D.; Bellini, R.; Scholte, E.J.; Rakotoarivony, L.M.; Schaffner, F. Monitoring population and environmental parameters of invasive mosquito species in Europe. Parasites Vectors 2014, 7, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, M.C.; South, E.C.; Branas, C.C. Nature-Based Strategies for Improving Urban Health and Safety. J. Urban Health 2015, 92, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Osei, F.B.; Stein, A. Diarrhea Morbidities in Small Areas: Accounting for Non-Stationarity in Sociodemographic Impacts using Bayesian Spatially Varying Coefficient Modelling. Sci. Rep. 2017, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.H.; Wang, Y.; Liu, L.; Yang, J.N.; Yung, Y.L.; Li, G.H.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702. [Google Scholar] [CrossRef]
- Tian, H.Y.; Liu, Y.H.; Li, Y.D.; Wu, C.H.; Chen, B.; Kraemer, M.U.G.; Li, B.Y.; Cai, J.; Xu, B.; Yang, Q.Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.N.; Chen, J. The changing prevalence of housing overcrowding in post-reform China: The case of Shanghai, 2000–2010. Habitat Int. 2014, 42, 214–223. [Google Scholar] [CrossRef]
- Li, G.; Weng, Q. Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. Int. J. Remote Sens. 2007, 28, 249–267. [Google Scholar] [CrossRef]
- Rappaport, J. A productivity model of city crowdedness. J. Urban Econ. 2008, 63, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.Q.; Weng, Q.H. Assessing Urban Environmental Quality Change of Indianapolis, United States, by the Remote Sensing and GIS Integration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 43–55. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liu, Y.H.; Ni, L.N.; Li, M.L.; Fan, J.P. Detecting Crowdedness Spot in City Transportation. IEEE Trans. Veh. Technol. 2013, 62, 1527–1539. [Google Scholar] [CrossRef]
- Deniz, B.; Kilicaslan, C. Assessment of the main city square of Aydin, Turkey using urban space quality criteria. J. Environ. Biol. 2020, 41, 413–420. [Google Scholar] [CrossRef]
- Li, X.T.; Hu, T.Y.; Gong, P.; Du, S.H.; Chen, B.; Li, X.C.; Dai, Q. Mapping Essential Urban Land Use Categories in Beijing with a Fast Area of Interest (AOI)-Based Method. Remote Sens. 2021, 13, 477. [Google Scholar] [CrossRef]
- Shen, J.X.; Cao, J.N.; Liu, X.F. BaG: Behavior-Aware Group Detection in Crowded Urban Spaces Using WiFi Probes. IEEE Trans. Mob. Comput. 2021, 20, 3298–3310. [Google Scholar] [CrossRef]
- Crane, R.; Daniere, A.; Harwood, S. The contribution of environmental amenities to low-income housing: A comparative study of Bangkok and Jakarta. Urban Stud. 1997, 34, 1495–1512. [Google Scholar] [CrossRef]
- Schrijnen, P.M. Infrastructure networks and red-green patterns in city regions. Landsc. Urban Plan. 2000, 48, 191–204. [Google Scholar] [CrossRef]
- Adriaens, P.; Goovaerts, P.; Skerlos, S.; Edwards, E.; Egli, T. Intelligent infrastructure for sustainable potable water: A roundtable for emerging transnational research and technology development needs. Biotechnol. Adv. 2003, 22, 119–134. [Google Scholar] [CrossRef]
- Dumbaugh, E. Safe streets, livable streets. J. Am. Plan. Assoc. 2005, 71, 283–298. [Google Scholar] [CrossRef]
- Ness, D. Sustainable urban infrastructure in China: Towards a Factor 10 improvement in resource productivity through integrated infrastructure systems. Int. J. Sustain. Dev. World Ecol. 2008, 15, 288–301. [Google Scholar] [CrossRef]
- Luo, J.; Yu, D.L.; Xin, M. Modeling Urban Growth Using GIS and Remote Sensing. Gisci. Remote Sens. 2008, 45, 426–442. [Google Scholar] [CrossRef]
- Qin, H.P.; Su, Q.; Khu, S.T. Assessment of environmental improvement measures using a novel integrated model: A case study of the Shenzhen River catchment, China. J. Environ. Manag. 2013, 114, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Hoffmann, S.; Luthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.L.; Fang, C.L. The dynamics of public safety in cities: A case study of Shanghai from 2010 to 2025. Habitat Int. 2017, 69, 104–113. [Google Scholar] [CrossRef]
- Rasoulkhani, K.; Mostafavi, A.; Cole, J.; Sharvelle, S. Resilience-based infrastructure planning and asset management: Study of dual and singular water distribution infrastructure performance using a simulation approach. Sustain. Cities Soc. 2019, 48, 12. [Google Scholar] [CrossRef]
- Peterson, P.J.; Williams, W.P. New indicator approaches for effective urban air quality management. Environ. Sci. Pollut. Res. 1999, 6, 225–232. [Google Scholar] [CrossRef]
- Cao, H.; Ikeda, S. Exposure Assessment of Heavy Metals Resulting from Farmland Application of Wastewater Sludge in Tianjin, China: The Examination of Two Existing National Standards for Soil and Farmland-Used Sludge. Risk Anal. Int. J. 2000, 20, 613–626. [Google Scholar] [CrossRef]
- Ruiz-Fernández, A.; Páez-Osuna, F.; Hillaire-Marcel, C.; Soto-Jiménez, M.; Ghaleb, B. Principal component analysis applied to the assessment of metal pollution from urban wastes in the Culiacán River Estuary. Bull. Environ. Contam. Toxicol. 2001, 67, 741–748. [Google Scholar] [CrossRef]
- Bouchair, A. Decline of urban ecosystem of Mzab valley. Build. Environ. 2004, 39, 719–732. [Google Scholar] [CrossRef]
- Wilkonson, P.; Thelen, J.; Sadeh, M.; Dalbokova, D.; Krzyzanowski, M. Indicator-based reporting on urban environmental problems: The case of air pollution. Epidemiology 2004, 15, S210–S211. [Google Scholar] [CrossRef]
- Cook, I.G.; Dummer, T.J.B. Changing health in China: Re-evaluating the epidemiological transition model. Health Policy 2004, 67, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ooka, R.; Kato, S. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer. Atmos. Environ. 2005, 39, 6362–6375. [Google Scholar] [CrossRef]
- Ju, X.T.; Zhang, F.S.; Bao, X.M.; Romheld, V.; Roelcke, M. Utilization and management of organic wastes in Chinese agriculture: Past, present and perspectives. Sci. China Ser. C-Life Sci. 2005, 48, 965–979. [Google Scholar] [CrossRef]
- Lad, R.K.; Desai, N.G.; Christion, R.A.; Deshpande, A.W. Fuzzy modeling for environmental pollution potential ranking of industries. Environ. Prog. 2008, 27, 84–90. [Google Scholar] [CrossRef]
- Li, X.H.; Song, J.C.; Lin, T.; Dixon, J.; Zhang, G.Q.; Ye, H. Urbanization and health in China, thinking at the national, local and individual levels. Environ. Health 2016, 15, S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.F.; Li, Y.; Wu, W. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region. Environ. Pollut. 2016, 208, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Li, G.D.; Fang, C.L.; Wang, S.J.; Sun, S. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- Shi, T.Z.; Yang, C.; Liu, H.Z.; Wu, C.; Wang, Z.H.; Li, H.; Zhang, H.F.; Guo, L.; Wu, G.F.; Su, F.Z. Mapping lead concentrations in urban topsoil using proximal and remote sensing data and hybrid statistical approaches. Environ. Pollut. 2021, 272, 116041. [Google Scholar] [CrossRef]
- Wu, L.; Jia, X.Y.; Gao, L.; Zhou, Y.Q. Effects of population flow on regional carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 62628–62639. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Y.; Tang, X.; Huang, H.; Wang, R. Assessing spatial-temporal evolution and key factors of urban livability in arid zone: The case study of the Loess Plateau, China. Ecol. Indic. 2022, 140, 108995. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, Z.Y. Towards the analysis of urban livability in China: Spatial-temporal changes, regional types, and influencing factors. Environ. Sci. Pollut. Res. 2022, 29, 60153–60172. [Google Scholar] [CrossRef]
- Brundtland, G.H.; Khalid, M.; Agnelli, S.; Al-Athel, S.; Chidzero, B. Our Common Future; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Batty, M. Big data, smart cities and city planning. Dialogues Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.D.; Dong, J.W.; Hamm, N.A.S.; Li, Z.C.; Wang, J.H.; Xing, H.F.; Fu, P. Integrating remote sensing and geospatial big data for urban land use mapping: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- He, X.; Cao, Y.W.; Zhou, C.S. Evaluation of Polycentric Spatial Structure in the Urban Agglomeration of the Pearl River Delta (PRD) Based on Multi-Source Big Data Fusion. Remote Sens. 2021, 13, 3639. [Google Scholar] [CrossRef]
- Yu, D.L.; Fang, C.L.; Xue, D.; Yin, J.Y. Assessing Urban Public Safety via Indicator-Based Evaluating Method: A Systemic View of Shanghai. Soc. Indic. Res. 2014, 117, 89–104. [Google Scholar] [CrossRef]
- Fang, C.; Shi, P.; Yu, D. Regional sustainable development and regional development planning. Prog. Geogr. 1997, 16, 48–53. [Google Scholar]
- Alawadi, K.; Hashem, S.; Maghelal, P. Perspectives on Everyday Urbanism: Evidence from an Abu Dhabi Neighborhood. J. Plan. Educ. Res. 2023, 0739456X221097839. [Google Scholar] [CrossRef]
- McFarlane, C.; Silver, J. Navigating the city: Dialectics of everyday urbanism. Trans. Inst. Br. Geogr. 2017, 42, 458–471. [Google Scholar] [CrossRef]
- Chase, J.; Crawford, M.; Kaliski, J. Everyday Urbanism: Expanded; The Monacelli Press: New York, NY, USA, 2008; p. 224. [Google Scholar]
- Ul Din, S.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (LUCC) Maps and Urban Expansion Dynamics of Hyderabad, Pakistan via Landsat Datasets and Support Vector Machine Framework. Remote Sens. 2021, 13, 3337. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, W.; Zhao, Y.; Tong, D. Extracting Land Use Change Patterns of Rural Town Settlements with Sequence Alignment Method. Land 2022, 11, 313. [Google Scholar] [CrossRef]
- Rahimi, A. A methodological approach to urban land-use change modeling using infill development pattern—A case study in Tabriz, Iran. Ecol. Process. 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Y.; Yu, D.; Qi, J.; Li, S. Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China. Land Use Pol. 2022, 119, 106162. [Google Scholar] [CrossRef]
- Yu, R.J.; Zeng, C.; Chang, M.X.; Bao, C.C.; Tang, M.S.; Xiong, F. Effects of Urban Vibrancy on an Urban Eco-Environment: Case Study on Wuhan City. Int. J. Environ. Res. Public Health 2022, 19, 3200. [Google Scholar] [CrossRef]
- Kirdar, G.; Cagdas, G. A decision support model to evaluate liveability in the context of urban vibrancy. Int. J. Archit. Comput. 2022, 20, 528–552. [Google Scholar] [CrossRef]
- Jia, C.; Liu, Y.F.; Du, Y.Y.; Huang, J.F.; Fei, T. Evaluation of Urban Vibrancy and Its Relationship with the Economic Landscape: A Case Study of Beijing. Isprs Int. J. Geo-Inf. 2021, 10, 72. [Google Scholar] [CrossRef]
- Zhang, X.C.; Sun, Y.R.; Chan, T.O.; Huang, Y.; Zheng, A.Y.; Liu, Z. Exploring Impact of Surrounding Service Facilities on Urban Vibrancy Using Tencent Location-Aware Data: A Case of Guangzhou. Sustainability 2021, 13, 444. [Google Scholar] [CrossRef]
- Wang, P.Y.; Liu, K.P.; Wang, D.J.; Fu, Y.J. Measuring Urban Vibrancy of Residential Communities Using Big Crowdsourced Geotagged Data. Front. Big Data 2021, 4, 690970. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Wu, C.; Lin, Y.; Li, Z.Y.; Du, Q.Y. Urban Morphology Promotes Urban Vibrancy from the Spatiotemporal and Synergetic Perspectives: A Case Study Using Multisource Data in Shenzhen, China. Sustainability 2020, 12, 4829. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.T.; Xia, J.Z.; Zhou, Y.L.; Lai, Y.N.; Jiang, J.C.; Li, Q.Q. Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Liu, P.; Wu, X.; Zhang, J.; Zhang, D.; Liu, X.; Yao, Y. Accurate Estimation of the Proportion of Mixed Land Use at the Street-Block Level by Integrating High Spatial Resolution Images and Geospatial Big Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6357–6370. [Google Scholar] [CrossRef]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Garcia-Pardo, K.A.; Moreno-Rangel, D.; Dominguez-Amarillo, S.; Garcia-Chavez, J.R. Remote sensing for the assessment of ecosystem services provided by urban A review of the methods. Urban For. Urban Green. 2022, 74, 127636. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Mutanga, O.; Sibanda, M. Quantitative remote sensing of forest ecosystem services in sub-Saharan Africa’s urban landscapes: A review. Environ. Monit. Assess. 2022, 194, 242. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.L.; Fan, Y.F.; Wu, Y.N.; Lin, Y.; Gan, M.Y.; Wang, K.; Malik, A.; Blackburn, G.A. Remote sensing of urban green spaces: A review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- de Almeida, C.R.; Teodoro, A.C.; Goncalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Parra, L. Remote Sensing and GIS in Environmental Monitoring. Appl. Sci. 2022, 12, 8045. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Wang, R.C.; Murayama, Y.; Morimoto, T. Scenario simulation studies of urban development using remote sensing and GIS: Review. Remote Sens. Appl. -Soc. Environ. 2021, 22, 100474. [Google Scholar] [CrossRef]
- Hao, J.W.; Zhu, J.; Zhong, R. The rise of big data on urban studies and planning practices in China: Review and open research issues. J. Urban Manag. 2015, 4, 92–124. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.C.; Dong, J.W. Big Geospatial Data and Data-Driven Methods for Urban Dengue Risk Forecasting: A Review. Remote Sens. 2022, 14, 5052. [Google Scholar] [CrossRef]
- De Nadai, M.; Xu, Y.Y.; Letouz, E.; Gonzalez, M.C.; Lepri, B. Socio-economic, built environment, and mobility conditions associated with crime: A study of multiple cities. Sci. Rep. 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Cheng, J.C.P.; Jiang, F.F.; Chen, W.W.; Zhang, J.C. Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques. Land Use Pol. 2020, 94, 104537. [Google Scholar] [CrossRef]
- Shultz, S.; Opie, C.; Atkinson, Q.D. Stepwise evolution of stable sociality in primates. Nature 2011, 479, 219–222. [Google Scholar] [CrossRef]
- Gibbs, J.P.; Martin, W.T. Urbanization, Technology, and the Division of Labor: International Patterns. Am. Sociol. Rev. 1962, 27, 667–677. [Google Scholar] [CrossRef]
- Hanson, J.W.; Ortman, S.G.; Lobo, J. Urbanism and the division of labour in the Roman Empire. J. R. Soc. Interface 2017, 14, 20170367. [Google Scholar] [CrossRef]
- Warren, D.I. The Functional Diversity of Urban Neighborhoods. Urban Aff. Q. 1977, 13, 151–180. [Google Scholar] [CrossRef]
- Von Thünen, J. The Isolated State; Hall, P., Ed.; Pergamon: Oxford, UK, 1966. [Google Scholar]
- Getis, A.; Getis, J. Christaller’s central place theory. J. Geogr. 1966, 65, 220–226. [Google Scholar] [CrossRef]
- Sonis, M. Central place theory after Christaller and Lösch: Some further explorations. In Space-Structure-Economy: A Tribute to August Lösch; Nomos Verlagsgesellschaft mbH & Co. KG: Baden-Baden, Germany, 2007; pp. 229–287. [Google Scholar]
- Schroeder, K.B.; Pepper, G.V.; Nettle, D. Local norms of cheating and the cultural evolution of crime and punishment: A study of two urban neighborhoods. PeerJ 2014, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- King, L.J. Central Place Theory; Regional Research Institute, West Virginia University: Morgantown, WV, USA, 2020. [Google Scholar]
- van Meeteren, M.; Poorthuis, A. Christaller and “big data”: Recalibrating central place theory via the geoweb. Urban Geogr. 2018, 39, 122–148. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.X.; Wang, D.; Zhang, S.W.; Ratti, C. Understanding urban centers in Shanghai with big data: Local and non-local function perspectives. Cities 2021, 113, 103156. [Google Scholar] [CrossRef]
- Hannerberg, D.; Kulldorff, G.; Ahlberg, G.; Ajo, R.; Godlund, S. The Function and Growth of Bus Traffic within the Sphere of Urban Influence; Department of Geography, Royal University: Lund, Sweden, 1955. [Google Scholar]
- Taaffe, E.J. The Urban Hierarchy: An Air Passenger Definition. Econ. Geogr. 1962, 38, 1–14. [Google Scholar] [CrossRef]
- Shafer, C.S.; Lee, B.K.; Turner, S. A tale of three greenway trails: User perceptions related to quality of life. Landsc. Urban Plan. 2000, 49, 163–178. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. Sprawl and urban growth. In Handbook of regional and urban economics; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2481–2527. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2005; p. 526. [Google Scholar]
- Xu, C.; Du, X.P.; Fan, X.T.; Yan, Z.Z.; Kang, X.J.; Zhu, J.J.; Hu, Z.Y. A Modular Remote Sensing Big Data Framework. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3000301. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.P.; Fan, X.T.; Giuliani, G.; Hu, Z.Y.; Wang, W.; Liu, J.; Wang, T.; Yan, Z.Z.; Zhu, J.J.; et al. Cloud-based storage and computing for remote sensing big data: A technical review. Int. J. Digit. Earth 2022, 15, 1417–1445. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.N.; Luo, J.C. Deep learning for processing and analysis of remote sensing big data: A technical review. Big Earth Data 2022, 6, 527–560. [Google Scholar] [CrossRef]
- Shah, P.B.; Patel, C.R. Integration of Remote Sensing and Big Data to Study Spatial Distribution of Urban Heat Island for Cities with Different Terrain. Int. J. Eng. 2023, 36, 71–77. [Google Scholar] [CrossRef]
- Dou, Y.Y.; Guo, C.Q.; Kuang, W.H.; Chi, W.F.; Lei, M. The Massive Expansion and Spatial Transformation of Potentially Contaminated Land Across China in 1990-2020 Observed from Remote Sensing and Big-data. Chin. Geogr. Sci. 2022, 32, 776–791. [Google Scholar] [CrossRef]
- Green, N.E. Aerial Photographic Interpretation and the Social Structure of the City; American Society of Photogrammetry: Bethesda, MD, USA, 1957. [Google Scholar]
- Monier, R.B.; Green, N.E. Aerial Photographic Interpretation and the Human Geography of the City. Prof. Geogr. 1957, 9, 2–5. [Google Scholar] [CrossRef]
- Green, N.E.; Monier, R.B. Aerial photographic interpretation of the human ecology of the city. Photogramm. Eng. 1959, 25, 770–773. [Google Scholar]
- Mullens Jr, R.H.; Senger, L.W. Analysis of Urban Residential Environments Using Color Infrared Aerial Photography: An Examination of Socioeconomic Variables and Physical Characteristics of Selected Areas in the Los Angeles Basin, with Addendum: An Application of the Concepts of the Los Angeles Residential Environment Study to the Ontario-Upland region of California; USGS Publications Warehouse: Washington, DC, USA, 1969. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Elvidge, C.D.; Paul, T.; Levine, E.; Privalsky, M.V.; Brown, V. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sens. Environ. 1997, 59, 105–117. [Google Scholar] [CrossRef]
- Kontoes, C.C.; Raptis, V. The potential of kernel classification techniques for land use mapping in urban areas using 5m-spatial resolution IRS-1C imagery. Int. J. Remote Sens. 2000, 21, 3145–3151. [Google Scholar] [CrossRef]
- Liu, X.; Lathrop, R.G. Urban change detection based on an artificial neural network. Int. J. Remote Sens. 2002, 23, 2513–2518. [Google Scholar] [CrossRef]
- Stow, D.A.; Chen, D.M. Sensitivity of multitemporal NOAA AVHRR data of an urbanizing region to land-use/land-cover changes and misregistration. Remote Sens. Environ. 2002, 80, 297–307. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Wang, J.F. A rule-based urban land use inferring method for fine-resolution multispectral imagery. Can. J. Remote Sens. 2003, 29, 1–13. [Google Scholar] [CrossRef]
- Greenhill, D.R.; Ripke, L.T.; Hitchman, A.P.; Jones, G.A.; Wilkinson, G.G. Characterization of suburban areas for land use planning using landscape ecological indicators derived from Ikonos-2 multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2015–2021. [Google Scholar] [CrossRef]
- Sugumaran, R.; Pavuluri, M.K.; Zerr, D. The use of high-resolution imagery for identification of urban climax forest species using traditional and rule-based classification approach. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1933–1939. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.Q.; Huang, N.S. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM plus imagery. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Gong, C.F.; Yu, S.X.; Joesting, H.; Chen, J.Q. Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images. Landsc. Urban Plan. 2013, 117, 57–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.Z.; Wang, H.Y.; Du, X.; Huang, H.P. Community scale livability evaluation integrating remote sensing, surface observation and geospatial big data. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 173–186. [Google Scholar] [CrossRef]
- Song, Y.M.; Huang, B.; Cai, J.X.; Chen, B. Dynamic assessments of population exposure to urban greenspace using multi-source big data. Sci. Total Environ. 2018, 634, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. A method for continuous extraction of multispectrally classified urban rivers. Photogramm. Eng. Remote Sens. 2000, 66, 991–999. [Google Scholar]
- Petchprayoon, P.; Blanken, P.D.; Ekkawatpanit, C.; Hussein, K. Hydrological impacts of land use/land cover change in a large river basin in central-northern Thailand. Int. J. Climatol. 2010, 30, 1917–1930. [Google Scholar] [CrossRef]
- Song, Y.M.; Chen, B.; Ho, H.C.; Kwan, M.P.; Liu, D.; Wang, F.; Wang, J.H.; Cai, J.X.; Li, X.J.; Xu, Y.; et al. Observed inequality in urban greenspace exposure in China. Environ. Int. 2021, 156, 106778. [Google Scholar] [CrossRef]
- Song, Y.M.; Chen, B.; Kwan, M.P. How does urban expansion impact people’s exposure to green environments? A comparative study of 290 Chinese cities. J. Clean. Prod. 2020, 246, 119018. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. Isprs J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Gluch, R.; Quattrochi, D.A.; Luvall, J.C. A multi-scale approach to urban thermal analysis. Remote Sens. Environ. 2006, 104, 123–132. [Google Scholar] [CrossRef]
- Hartz, D.A.; Prashad, L.; Hedquist, B.C.; Golden, J.; Brazel, A.J. Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sens. Environ. 2006, 104, 190–200. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens. Environ. 2009, 113, 2592–2605. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I.M. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 2015, 56, 145–153. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Fu, D.J.; Atkinson, P.M.; Zhang, X.Z. Response of urban heat island to future urban expansion over the Beijing-Tianjin-Hebei metropolitan area. Appl. Geogr. 2016, 70, 26–36. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). Isprs J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.C.; Bonafoni, S.; Zhang, L.X.; Wang, R.H. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Huang, X.; Tang, Q.H. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef] [PubMed]
- WANG, S.; ZHAO, C.; CHEN, X.; LIU, D. Remote sensing-based green space evolution in Tangshan and its influence on heat island effect. Remote Sens. Nat. Resour. 2022, 34, 168–175. [Google Scholar]
- Yang, K.; Zhou, T.; Wang, C.; Wang, Z.; Han, Q.; Tao, F. RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint. Remote Sens. 2022, 14, 3505. [Google Scholar] [CrossRef]
- Tong, X.H.; Zhang, X.; Liu, M.L. Urban Land Use Change Detection Based on High Accuracy Classification of Multispectral Remote Sensing Imagery. Spectrosc. Spectr. Anal. 2009, 29, 2131–2135. [Google Scholar] [CrossRef]
- Ban, Y.F.; Hu, H.T.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. Int. J. Remote Sens. 2010, 31, 1391–1410. [Google Scholar] [CrossRef]
- Lu, D.S.; Hetrick, S.; Moran, E. Land Cover Classification in a Complex Urban-Rural Landscape with QuickBird Imagery. Photogramm. Eng. Remote Sens. 2010, 76, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.M.; Sun, B. Analysis of spatio-temporal pattern and driving force of land cover change using multi-temporal remote sensing images. Sci. China-Technol. Sci. 2010, 53, 111–119. [Google Scholar] [CrossRef]
- Malinverni, E.S. Change Detection Applying Landscape Metrics on High Remote Sensing Images. Photogramm. Eng. Remote Sens. 2011, 77, 1045–1056. [Google Scholar] [CrossRef]
- Tian, H.Q.; Banger, K.; Bo, T.; Dadhwal, V.K. History of land use in India during 1880-2010: Large-scale land transformations reconstructed from satellite data and historical archives. Glob. Planet. Chang. 2014, 121, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use Pol. 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Lu, D.S.; Moran, E.F.; Dutra, L.V.; Calvi, M.F.; de Oliveira, M.A.F. Examining Spatial Distribution and Dynamic Change of Urban Land Covers in the Brazilian Amazon Using Multitemporal Multisensor High Spatial Resolution Satellite Imagery. Remote Sens. 2017, 9, 381. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, H.; Song, Z.L.; Lu, J.B.; Meng, P.Y.; Qin, S.H. Mapping Essential Urban Land Use Categories in Nanjing by Integrating Multi-Source Big Data. Remote Sens. 2020, 12, 2386. [Google Scholar] [CrossRef]
- Kong, X.S.; Fu, M.X.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in China. Land Use Pol. 2022, 113, 105895. [Google Scholar] [CrossRef]
- Guo, J.; Gong, P.; Dronova, I.; Zhu, Z.L. Forest cover change in China from 2000 to 2016. Int. J. Remote Sens. 2022, 43, 593–606. [Google Scholar] [CrossRef]
- Haack, B.N. An analysis of thematic mapper simulator data for urban environments. Remote Sens. Environ. 1983, 13, 265–275. [Google Scholar] [CrossRef]
- Howarth, P.J.; Boasson, E. Landsat digital enhancements for change detection in urban environments. Remote Sens. Environ. 1983, 13, 149–160. [Google Scholar] [CrossRef]
- Zhu, G.B.; Blumberg, D.G. Classification using ASTER data and SVM algorithms; The case study of Beer Sheva, Israel. Remote Sens. Environ. 2002, 80, 233–240. [Google Scholar] [CrossRef]
- Stow, D.; Coulter, L.; Kaiser, J.; Hope, A.; Service, D.; Schutte, K.; Walters, A. Irrigated vegetation assessment for urban environments. Photogramm. Eng. Remote Sens. 2003, 69, 381–390. [Google Scholar] [CrossRef]
- Thomas, N.; Hendrix, C.; Congalton, R.G. A comparison of urban mapping methods using high-resolution digital imagery. Photogramm. Eng. Remote Sens. 2003, 69, 963–972. [Google Scholar] [CrossRef]
- Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for urban area remote sensing-Development and analysis of a spectral library from 350 to 2400 nm. Remote Sens. Environ. 2004, 91, 304–319. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Leong, M.; Roderick, G.K. Remote sensing captures varying temporal patterns of vegetation between human-altered and natural landscapes. PeerJ 2015, 3, 17. [Google Scholar] [CrossRef]
- Li, J.T.; Cheng, X.J.; Wu, Z.L.; Guo, W. An Over-Segmentation-Based Uphill Clustering Method for Individual Trees Extraction in Urban Street Areas From MLS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2206–2221. [Google Scholar] [CrossRef]
- Lasnik, J.; Nicks, D.K., Jr.; Baker, B.; Canova, B.; Chance, K.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; et al. Remote Sensing of Air Pollution from Geo with GEMS and TEMPO. AGU Fall Meet. Abstr. 2017, 2017, A53A-2206. [Google Scholar]
- Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jeong, U.; Ahn, M.H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.S.; Lee, K.H.; Yoo, J.M.; et al. New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, E1–E22. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R.; Vicedo-Cabrera, A.M.; Sera, F.; Masselot, P.; Stafoggia, M.; de Hoogh, K.; Kloog, I.; Reis, S.; Vieno, M.; Gasparrini, A. A Satellite-Based Spatio-Temporal Machine Learning Model to Reconstruct Daily PM2.5 Concentrations across Great Britain. Remote Sens. 2020, 12, 3803. [Google Scholar] [CrossRef]
- Shackelford, A.K.; Davis, C.H. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2354–2363. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.S.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Lu, D.S.; Weng, Q.H. Spectral mixture analysis of the urban landscape in Indianapolis with landsat ETM plus imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1053–1062. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S.; Weng, Q.H. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Yu, D.L.; Wei, Y.H.D.; Wu, C.S. Modeling spatial dimensions of housing prices in Milwaukee, WI. Environ. Plan. B-Plan. Des. 2007, 34, 1085–1102. [Google Scholar] [CrossRef]
- Yu, D. Modeling owner-occupied single-family house values in the city of milwaukee: A geographically weighted regression approach. Gisci. Remote Sens. 2007, 44, 267–282. [Google Scholar] [CrossRef]
- Weng, Q.H.; Hu, X.F.; Lu, D.S. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: A comparison. Int. J. Remote Sens. 2008, 29, 3209–3232. [Google Scholar] [CrossRef]
- Lu, D.S.; Weng, Q.H. Extraction of urban impervious surfaces from an IKONOS image. Int. J. Remote Sens. 2009, 30, 1297–1311. [Google Scholar] [CrossRef]
- van der Linden, S.; Hostert, P. The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 2298–2305. [Google Scholar] [CrossRef]
- Li, P.J.; Guo, J.C.; Song, B.Q.; Xiao, X.B. A Multilevel Hierarchical Image Segmentation Method for Urban Impervious Surface Mapping Using Very High Resolution Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 103–116. [Google Scholar] [CrossRef]
- Lu, D.S.; Moran, E.; Hetrick, S. Detection of impervious surface change with multitemporal Landsat images in an urban-rural frontier. Isprs J. Photogramm. Remote Sens. 2011, 66, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.H.; Ge, Y.; An, R.; Chen, Y. Super-Resolution Mapping of Impervious Surfaces from Remotely Sensed Imagery with Points-of-Interest. Remote Sens. 2018, 10, 242. [Google Scholar] [CrossRef] [Green Version]
- Swanwick, R.H.; Read, Q.D.; Guinn, S.M.; Williamson, M.A.; Hondula, K.L.; Elmore, A.J. Dasymetric population mapping based on US census data and 30-m gridded estimates of impervious surface. Sci. Data 2022, 9, 523. [Google Scholar] [CrossRef]
- Niu, T.; Chen, Y.M.; Yuan, Y. Measuring urban poverty using multi -source data and a random forest algorithm: A case study in Guangzhou. Sustain. Cities Soc. 2020, 54, 102014. [Google Scholar] [CrossRef]
- Qiu, G.; Bao, Y.H.; Yang, X.C.; Wang, C.; Ye, T.T.; Stein, A.; Jia, P. Local Population Mapping Using a Random Forest Model Based on Remote and Social Sensing Data: A Case Study in Zhengzhou, China. Remote Sens. 2020, 12, 1618. [Google Scholar] [CrossRef]
- Munoz-Mari, J.; Bovolo, F.; Gomez-Chova, L.; Bruzzone, L.; Camps-Valls, G. Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3188–3197. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.H.; Zhang, X.; Liu, M.L. Detection of urban sprawl using a genetic algorithm-evolved artificial neural network classification in remote sensing: A case study in Jiading and Putuo districts of Shanghai, China. Int. J. Remote Sens. 2010, 31, 1485–1504. [Google Scholar] [CrossRef]
- Azari, M.; Tayyebi, A.; Helbich, M.; Reveshty, M.A. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: Application to Maragheh, Iran. Gisci. Remote Sens. 2016, 53, 183–205. [Google Scholar] [CrossRef]
- Yang, H.P.; Yu, B.; Luo, J.C.; Chen, F. Semantic segmentation of high spatial resolution images with deep neural networks. Gisci. Remote Sens. 2019, 56, 749–768. [Google Scholar] [CrossRef]
- Sun, Z.C.; Zhao, X.W.; Wu, M.F.; Wang, C.Z. Extracting Urban Impervious Surface from WorldView-2 and Airborne LiDAR Data Using 3D Convolutional Neural Networks. J. Indian Soc. Remote Sens. 2019, 47, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.F.; Luo, F.; Ren, F.; Huang, W.L.; Li, Q.Y.; Du, K.X.; Yuan, D.D. Identifying Urban Wetlands through Remote Sensing Scene Classification Using Deep Learning: A Case Study of Shenzhen, China. Isprs Int. J. Geo-Inf. 2022, 11, 131. [Google Scholar] [CrossRef]
- Jagannathan, J.; Divya, C. Deep learning for the prediction and classification of land use and land cover changes using deep convolutional neural network. Ecol. Inform. 2021, 65, 101412. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; Garcia-Haro, F.J.; Martinez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef]
- Yu, D.; Wu, C. Incorporating remote sensing information in modeling house values. Photogramm. Eng. Remote Sens. 2006, 72, 129–138. [Google Scholar] [CrossRef]
- Lo, C.P. Population estimation using geographically weighted regression. Gisci. Remote Sens. 2008, 45, 131–148. [Google Scholar] [CrossRef]
- Ouyang, Z.T.; Fan, P.L.; Chen, J.Q.; Lafortezza, R.; Messina, J.P.; Giannico, V.; John, R. A Bayesian approach to mapping the uncertainties of global urban lands. Landsc. Urban Plan. 2019, 187, 210–218. [Google Scholar] [CrossRef]
- Zhu, X.X.; Qiu, C.P.; Hu, J.L.; Shi, Y.L.; Wang, Y.Y.; Schmitt, H.; Taubenbock, H. The urban morphology on our planet-Global perspectives from space. Remote Sens. Environ. 2022, 269, 112794. [Google Scholar] [CrossRef]
- Fang, S.F.; Gertner, G.Z.; Sun, Z.L.; Anderson, A.A. The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landsc. Urban Plan. 2005, 73, 294–306. [Google Scholar] [CrossRef]
- Zhu, M.; Jiang, N.; Li, J.; Xu, J.; Fan, Y. The effects of sensor spatial resolution and changing grain size on fragmentation indices in urban landscape. Int. J. Remote Sens. 2006, 27, 4791–4805. [Google Scholar] [CrossRef]
- Lu, Q.S.; Liang, F.Y.; Bi, X.L.; Duffy, R.; Zhao, Z.P. Effects of urbanization and industrialization on agricultural land use in Shandong Peninsula of China. Ecol. Indic. 2011, 11, 1710–1714. [Google Scholar] [CrossRef]
- Mahmoud, H.; Alfons, R.; Reffat, R.M. Analysis of The Driving Forces of Urban Expansion in Luxor City by Remote Sensing Monitoring. Int. J. Integr. Eng. 2019, 11, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.M.; Yang, Y.C.; Guo, T. Measurement of Urban-Rural Integration Level in Suburbs and Exurbs of Big Cities Based on Land-Use Change in Inland China: Chengdu. Land 2021, 10, 474. [Google Scholar] [CrossRef]
- Clapham, W.B. Continuum-based classification of remotely sensed imagery to describe urban sprawl on a watershed scale. Remote Sens. Environ. 2003, 86, 322–340. [Google Scholar] [CrossRef]
- Tang, J.; Wang, L.; Zhang, S. Investigating landscape pattern and its dynamics in Daqing, China. Int. J. Remote Sens. 2005, 26, 2259–2280. [Google Scholar] [CrossRef]
- Huang, J.G.; Lu, X.X.; Sellers, J.M. A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landsc. Urban Plan. 2007, 82, 184–197. [Google Scholar] [CrossRef]
- Bibri, S.E. Compact urbanism and the synergic potential of its integration with data-driven smart urbanism: An extensive interdisciplinary literature review. Land Use Pol. 2020, 97, 20. [Google Scholar] [CrossRef]
- Jonca, J.; Pawnuk, M.; Bezyk, Y.; Arsen, A.; Sowka, I. Drone-Assisted Monitoring of Atmospheric Pollution-A Comprehensive Review. Sustainability 2022, 14, 11516. [Google Scholar] [CrossRef]
- Ryu, J.H. UAS-based real-time water quality monitoring, sampling, and visualization platform (UASWQP). Hardwarex 2022, 11, e00277. [Google Scholar] [CrossRef]
- Naughton, J.; McDonald, W. Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Loggia, C.; Govender, V. A hybrid methodology to map informal settlements in Durban, South Africa. Proc. Inst. Civ. Eng. -Eng. Sustain. 2020, 173, 257–268. [Google Scholar] [CrossRef]
- Wu, C.S.; Murray, A.T. Population estimation using Landsat Enhanced Thematic Mapper imagery. Geogr. Anal. 2007, 39, 26–43. [Google Scholar] [CrossRef]
- Wei, S.; Lin, Y.; Zhang, H.; Wan, L.; Lin, H.; Wu, Z. Estimating Chinese residential populations from analysis of impervious surfaces derived from satellite images. Int. J. Remote Sens. 2021, 42, 2303–2326. [Google Scholar] [CrossRef]
- Lin, J.Y.; Luo, S.Y.; Huang, Y.Q. Poverty estimation at the county level by combining LuoJia1-01 nighttime light data and points of interest. Geocarto Int. 2022, 37, 3590–3606. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J.; Jiang, H.T.; Qiu, Y.H. Application of Social Network Analysis in the Economic Connection of Urban Agglomerations Based on Nighttime Lights Remote Sensing: A Case Study in the New Western Land-Sea Corridor, China. Isprs Int. J. Geo-Inf. 2022, 11, 522. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zhang, J. Extraction of Urban Built-Up Areas Based on Data Fusion: A Case Study of Zhengzhou, China. Isprs Int. J. Geo-Inf. 2022, 11, 521. [Google Scholar] [CrossRef]
- Du, Z.Y.; Wu, W.; Liu, Y.X.; Zhi, W.F.; Lu, W.Y. Evaluation of China’s High-Speed Rail Station Development and Nearby Human Activity Based on Nighttime Light Images. Int. J. Environ. Res. Public Health 2021, 18, 557. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Chang, S.P. Population Spatial Distribution Based on Luojia 1-01 Nighttime Light Image: A Case Study of Beijing. Chin. Geogr. Sci. 2021, 31, 966–978. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Nakayama, M. Estimating Population with DMSP/OLS Nighttime Data. Proc. Int. Symp. Remote Sens. 1996, 12, 216–220. [Google Scholar]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Ma, X.K.; Yang, Z.P.; Wang, J.Z.; Han, F. Mapping population on Tibetan Plateau by fusing VIIRS data and nighttime Tencent location-based services data. Ecol. Indic. 2022, 139, 108893. [Google Scholar] [CrossRef]
- Lu, Y.H.; Coops, N.C. Bright lights, big city: Causal effects of population and GDP on urban brightness. PLoS ONE 2018, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Li, W.F. A nighttime light imagery estimation of ethnic disparity in economic well-being in mainland China and Taiwan (2001-2013). Eurasian Geogr. Econ. 2014, 55, 691–714. [Google Scholar] [CrossRef]
- Chowdhury, P.K.R.; Maithani, S. Modelling urban growth in the Indo-Gangetic plain using nighttime OLS data and cellular automata. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 155–165. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.M.; Yan, Z.W.; Hu, Y.H.; Jia, G.S. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J. Geophys. Res. -Atmos. 2012, 117, D21103. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.M.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Cai, J.X.; Huang, B.; Song, Y.M. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Lin, C.Y.; Su, C.J.; Kusaka, H.; Akimoto, Y.; Sheng, Y.F.; Huang, J.C.; Hsu, H.H. Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmos. Chem. Phys. 2016, 16, 1809–1822. [Google Scholar] [CrossRef] [Green Version]
- Fragkias, M.; Lobo, J.; Seto, K.C. A comparison of nighttime lights data for urban energy research: Insights from scaling analysis in the US system of cities. Environ. Plan. B-Urban Anal. City Sci. 2017, 44, 1077–1096. [Google Scholar] [CrossRef]
- Zhang, X.W.; Wu, J.S.; Peng, J.; Cao, Q.W. The Uncertainty of Nighttime Light Data in Estimating Carbon Dioxide Emissions in China: A Comparison between DMSP-OLS and NPP-VIIRS. Remote Sens. 2017, 9, 797. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.H.; Lu, Y.H.; Yang, X.J.; Chen, L.D. Understanding the variability of urban heat islands from local background climate and urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.; Boe-Gibson, G. Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019. Remote Sens. 2021, 13, 2741. [Google Scholar] [CrossRef]
- Jendryke, M.; Balz, T.; McClure, S.C.; Liao, M.S. Putting people in the picture: Combining big location-based social media data and remote sensing imagery for enhanced contextual urban information in Shanghai. Comput. Environ. Urban Syst. 2017, 62, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Peled, Y.; Fishman, T. Estimation and mapping of the material stocks of buildings of Europe: A novel nighttime lights-based approach. Resour. Conserv. Recycl. 2021, 169, 105509. [Google Scholar] [CrossRef]
- Zhang, J.W.; Liu, X.T.; Tan, X.Y.; Jia, T.; Senousi, A.M.; Huang, J.W.; Yin, L.; Zhang, F. Nighttime Vitality and Its Relationship to Urban Diversity: An Exploratory Analysis in Shenzhen, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 309–322. [Google Scholar] [CrossRef]
- Ma, T. Multi-Level Relationships between Satellite-Derived Nighttime Lighting Signals and Social Media-Derived Human Population Dynamics. Remote Sens. 2018, 10, 1128. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.J.; Liu, S.R.; Wu, Y.Z.; Shi, K.F. The Regional Disparity of Urban Spatial Expansion Is Greater than That of Urban Socioeconomic Expansion in China: A New Perspective from Nighttime Light Remotely Sensed Data and Urban Land Datasets. Remote Sens. 2022, 14, 4348. [Google Scholar] [CrossRef]
- Liu, S.R.; Shen, J.W.; Liu, G.F.; Wu, Y.Z.; Shi, K.F. Exploring the effect of urban spatial development pattern on carbon dioxide emissions in China: A socioeconomic density distribution approach based on remotely sensed nighttime light data. Comput. Environ. Urban Syst. 2022, 96, 101847. [Google Scholar] [CrossRef]
- Galesic, M.; Bruine de Bruin, W.; Dalege, J.; Feld, S.L.; Kreuter, F.; Olsson, H.; Prelec, D.; Stein, D.L.; van der Does, T. Human social sensing is an untapped resource for computational social science. Nature 2021, 595, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Abdelzaher, T.; Kaplan, L. (Eds.) Chapter 5-Social Sensing: A maximum likelihood estimation approach. In Social Sensing; Morgan Kaufmann: Boston, MA, USA, 2015; pp. 57–77. [Google Scholar]
- Zhao, Y.X.; Cheng, S.X.; Yu, X.Y.; Xu, H.L. Chinese Public’s Attention to the COVID-19 Epidemic on Social Media: Observational Descriptive Study. J. Med. Internet Res. 2020, 22, 13. [Google Scholar] [CrossRef]
- Patrick, S.L.; Cormier, H.C. Are Our Lives the Experiment? COVID-19 Lessons during a Chaotic Natural Experiment-A Commentary. Health Behav. Policy Rev. 2020, 7, 165–169. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Abdelzaher, T. Social Sensing. In Managing and Mining Sensor Data; Aggarwal, C.C., Ed.; Springer: Boston, MA, USA, 2013; pp. 237–297. [Google Scholar]
- Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban Computing: Concepts, Methodologies, and Applications. ACM Trans. Intell. Syst. Technol. 2014, 5, 55. [Google Scholar] [CrossRef]
- Council, N.R. Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers; The National Academies Press: Washington, DC, USA, 2003; p. 392. [Google Scholar]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef]
- Eagle, N.; Pentland, A. Reality mining: Sensing complex social systems. Pers. Ubiquitous Comput. 2006, 10, 255–268. [Google Scholar] [CrossRef]
- Adams, B.; Phung, D.; Venkatesh, S. Sensing and Using Social Context. Acm Trans. Multimed. Comput. Commun. Appl. 2008, 5, 1–27. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Babar, M.; Arif, F.; Jan, M.A.; Tan, Z.Y.; Khan, F. Urban data management system: Towards Big Data analytics for Internet of Things based smart urban environment using customized Hadoop. Futur. Gener. Comp. Syst. 2019, 96, 398–409. [Google Scholar] [CrossRef]
- Li, C.L.; Bai, J.P. Automatic content extraction and time-aware topic clustering for large-scale social network on cloud platform. J. Supercomput. 2019, 75, 2890–2924. [Google Scholar] [CrossRef]
- Badreldin, N.; Abu Hatab, A.; Lagerkvist, C.J. Spatiotemporal dynamics of urbanization and cropland in the Nile Delta of Egypt using machine learning and satellite big data: Implications for sustainable development. Environ. Monit. Assess. 2019, 191, 23. [Google Scholar] [CrossRef] [PubMed]
- Wu, W. New Methods of Urban Research in the Information Age—Based on the Combination of Big Data and Traditional Data. In Proceedings of the 2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City; Springer: Berlin, Germany, 2022; 2, pp. 301–309. [Google Scholar]
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O.; Hu, B. Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103001. [Google Scholar] [CrossRef]
- Mayer-Schönberger, V.; Cukier, K. Big data: A revolution That Will Transform How We Live, Work, and Think; Houghton Mifflin Harcourt: Boston, MA, USA, 2013. [Google Scholar]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Enterprise Big Data Framework. A Short History of Big Data. Available online: https://www.bigdataframework.org/knowledge/a-short-history-of-big-data/ (accessed on 2 November 2022).
- Yu, D.; Procopio, N.A.; Fang, C. Simulating the Changes of Invasive Phragmites australis in a Pristine Wetland Complex with a Grey System Coupled System Dynamic Model: A Remote Sensing Practice. Remote Sens. 2022, 14, 3886. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L. Defining Urban Big Data in Urban Planning: Literature Review. J. Urban Plan. Dev. 2023, 149, 04022044. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Yuan, Y.; Zhang, F.; Kang, C.; Kang, Y.; Wang, K. Methods of Social Sensing for Urban Studies. Urban Remote Sens. 2021, 71–89. [Google Scholar]
- Wu, J.Y.; Lu, Y.T.; Gao, H.; Wang, M.S. Cultivating historical heritage area vitality using urban morphology approach based on big data and machine learning. Comput. Environ. Urban Syst. 2022, 91, 101716. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Hung, W.C.; Chen, Y.C.; Cheng, K.S. Comparing landcover patterns in Tokyo, Kyoto, and Taipei using ALOS multispectral images. Landsc. Urban Plan. 2010, 97, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yao, S.; Liu, S. The 2010 Report of China’s Urban Agglomeration Development; Science Press: Beijing, China, 2011; pp. 15–22. [Google Scholar]
- Fang, C.L.; Yu, D.L. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Fang, C.L.; Yu, X.H.; Zhang, X.L.; Fang, J.W.; Liu, H.M. Big data analysis on the spatial networks of urban agglomeration. Cities 2020, 102, 102735. [Google Scholar] [CrossRef]
- Wang, H.; Kilmartin, L. Comparing Rural and Urban Social and Economic Behavior in Uganda: Insights from Mobile Voice Service Usage. J. Urban Technol. 2014, 21, 61–89. [Google Scholar] [CrossRef]
- Huang, L.Y.; Wu, Y.N.; Zheng, Q.; Zheng, Q.M.; Zheng, X.Y.; Gan, M.Y.; Wang, K.; Shahtahmassebi, A.; Deng, J.S.; Wang, J.H.; et al. Quantifying the Spatiotemporal Dynamics of Industrial Land Uses through Mining Free Access Social Datasets in the Mega Hangzhou Bay Region, China. Sustainability 2018, 10, 3463. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Liu, Y.S.; Li, Y.R.; Du, G.M. Quantifying spatio-temporal patterns of urban expansion in Beijing during 1985-2013 with rural-urban development transformation. Land Use Pol. 2018, 74, 220–230. [Google Scholar] [CrossRef]
- Chen, Y.P.; Deng, A. Using POI Data and Baidu Migration Big Data to Modify Nighttime Light Data to Identify Urban and Rural Area. IEEE Access 2022, 10, 93513–93524. [Google Scholar] [CrossRef]
- Wang, L.X. Rural Tourism Resource Research Based on Multisensor and Geographic Information Big Data. J. Sens. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Zhang, W.W.; Shen, J.H.; Mo, Z.B.; Peng, Y. Smart city with Chinese characteristics against the background of big data: Idea, action and risk. J. Clean. Prod. 2018, 173, 60–66. [Google Scholar] [CrossRef]
- Iban, M.C.; Aksu, O. A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach. Land Use Pol. 2020, 91, 104376. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, G.D.; Zhang, T.T.; Ding, M.J.; Liu, B.L.; Wang, H. Exploring Spatial Variations in the Relationships between Landscape Functions and Human Activities in Suburban Rural Communities: A Case Study in Jiangning District, China. Int. J. Environ. Res. Public Health 2021, 18, 9782. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.C.; Li, G.Q. Big spatial vector data management: A review. Big Earth Data 2018, 2, 108–129. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.Y.; Li, X.C.; Cao, W.T.; He, C.Y.; Yu, B.L.; Li, X.; Elvidge, C.D.; Cheng, W.M.; Zhou, C.H. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.W.; Ye, X.Y.; Zheng, Z.H.; Li, D.; Sun, L.S.; Li, R.R.; Benya, S. Modeling Polycentric Urbanization Using Multisource Big Geospatial Data. Remote Sens. 2019, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.X.; Yan, J.F.; Su, F.Z.; Du, J.X.; Zhao, S.Y.; Bai, J.B. Construction of a Scoring Evaluation Model for Identifying Urban Functional Areas Based on Multisource Data. J. Urban Plan. Dev. 2022, 148, 04022043. [Google Scholar] [CrossRef]
- Richardson, H.W.; Gordon, P.; Choi, Y. Tests of the standard urban model: A micro (trade-off) alternative. Rev. Urban Reg. Dev. Stud. 1992, 4, 50–56. [Google Scholar] [CrossRef]
- Haghani, A.; Lee, S.Y.; Byun, J.H. A system dynamics approach to land use/transportation system performance modeling-Part I: Methodology. J. Adv. Transp. 2003, 37, 1–41. [Google Scholar] [CrossRef]
- Haghani, A.; Lee, S.Y.; Byun, J.H. A system dynamics approach to land use/transportation system performance modeling-Part II: Application. J. Adv. Transp. 2003, 37, 43–82. [Google Scholar] [CrossRef]
- Kim, H.; Waddell, P.; Shankar, V.N.; Ulfarsson, G.F. Modeling micro-spatial employment location patterns: A comparison of count and choice approaches. Geogr. Anal. 2008, 40, 123–151. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A.; Batelaan, O. Coupling urban expansion models and hydrological models: How important are spatial patterns? Land Use Pol. 2010, 27, 965–975. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Y.H.D. Population distribution and spatial structure in transitional Chinese cities: A study of Nanjing. Eurasian Geogr. Econ. 2006, 47, 585–603. [Google Scholar] [CrossRef]
- Yu, D.L.; Wei, Y.D. Spatial data analysis of regional development in Greater Beijing, China, in a GIS environment. Pap. Reg. Sci. 2008, 87, 97–117. [Google Scholar] [CrossRef]
- Liu, Q.; Ullah, H.; Wan, W.G.; Peng, Z.Y.; Hou, L.; Qu, T.; Haidery, S.A. Analysis of Green Spaces by Utilizing Big Data to Support Smart Cities and Environment: A Case Study About the City Center of Shanghai. Isprs Int. J. Geo-Inf. 2020, 9, 360. [Google Scholar] [CrossRef]
- Zumwald, M.; Knusel, B.; Bresch, D.N.; Knutti, R. Mapping urban temperature using crowd-sensing data and machine learning. Urban Clim. 2021, 35, 100739. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, K. Spatial autocorrelation: A review of existing and new measures with applications. Econ. Geogr. 1970, 46, 269–292. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Dubin, R.A. Spatial autocorrelation and neighborhood quality. Reg. Sci. Urban Econ. 1992, 22, 433–452. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Anselin, L.; Kelejian, H.H. Testing for spatial error autocorrelation in the presence of endogenous regressors. Int. Reg. Sci. Rev. 1997, 20, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Brueckner, J.K.; Colwell, P.F. A spatial model of housing attributes: Theory and evidence. Land Econ. 1983, 59, 58–69. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Dependence and Spatial Structural Instability in Applied Regression-Analysis. J. Reg. Sci. 1990, 30, 185–207. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. PROPERTIES OF TESTS FOR SPATIAL DEPENDENCE IN LINEAR-REGRESSION MODELS. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Griffith, D.A. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2000, 2, 141–156. [Google Scholar] [CrossRef]
- Yu, D.L.; Wei, Y.H.D. Analyzing regional inequality in post-Mao China in a GIS environment. Eurasian Geogr. Econ. 2003, 44, 514–534. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publisher: Dordrecht, The Netherland, 1988. [Google Scholar]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Banihabib, M.E.; Mousavi-Mirkalaei, P. Extended linear and non-linear auto-regressive models for forecasting the urban water consumption of a fast-growing city in an arid region. Sustain. Cities Soc. 2019, 48, 101585. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: New York, NY, USA, 2014. [Google Scholar]
- Yu, D.; Peterson, N.A.; Sheffer, M.A.; Reid, R.J.; Schnieder, J.E. Tobacco outlet density and demographics: Analysing the relationships with a spatial regression approach. Public Health 2010, 124, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.L.; Zhang, Y.J.; Wu, X.W. How socioeconomic and environmental factors impact the migration destination choices of different population groups in China: An eigenfunction-based spatial filtering analysis (vol 15, pg 129, 2020). Popul. Environ. 2020, 41, 396. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.L.; Murakami, D.; Zhang, Y.J.; Wu, X.W.; Li, D.; Wang, X.X.; Li, G.D. Investigating high-speed rail construction’s support to county level regional development in China: An eigenvector based spatial filtering panel data analysis. Transp. Res. Pt. B-Methodol. 2020, 133, 21–37. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationship; John Wiley & Sons: West Essex, UK, 2002. [Google Scholar]
- Fotheringham, A.S.; Yang, W.B.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environ. Plan. A 2008, 40, 2751–2769. [Google Scholar] [CrossRef]
- Yu, D.L. Exploring spatiotemporally varying regressed relationships: The geographically weighted panel regression analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 134–139. [Google Scholar]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015, 17, 311–331. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spat. Stat. 2019, 30, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Murakami, D.; Yoshida, T.; Seya, H.; Griffith, D.A.; Yamagata, Y. A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spat. Stat. 2017, 19, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Lang, W.; Chen, T.; Chan, E.H.W.; Yung, E.H.K.; Lee, T.C.F. Understanding livable dense urban form for shaping the landscape of community facilities in Hong Kong using fine-scale measurements. Cities 2018, 84, 34–45. [Google Scholar] [CrossRef]
- Tang, L.J.; Lin, Y.; Li, S.J.; Li, S.; Li, J.Y.; Ren, F.; Wu, C. Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data. Sustainability 2018, 10, 4565. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.J.; Cui, X.; Li, H.; Luo, P.Y.; Liu, R.Z.; Yang, T. TOD and vibrancy: The spatio-temporal impacts of the built environment on vibrancy. Front. Environ. Sci. 2022, 10, 1009094. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Olsson, G. Explanation, Prediction, and Meaning Variance: An Assessment of Distance Interaction Models. Econ. Geogr. 1970, 46, 223–233. [Google Scholar] [CrossRef]
- Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA.; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Rue, H.; Held, L. Gaussian Markov Random Fields: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B-Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Rue, H.; Riebler, A.; Sorbye, S.H.; Illian, J.B.; Simpson, D.P.; Lindgren, F.K. Bayesian Computing with INLA: A Review. In Annual Review of Statistics and Its Application; Fienberg, S.E., Ed.; Annual Review of Statistics and Its Application; Annual Reviews: Palo Alto, CA, USA, 2017; Volume 4, pp. 395–421. [Google Scholar]
- Blangiardo, M.; Cameletti, M.; Baio, G.; Rue, H. Spatial and spatio-temporal models with R-INLA. Spat. Spatio-Temporal Epidemiol. 2013, 4, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Franco-Villoria, M.; Ventrucci, M.; Rue, H. A unified view on Bayesian varying coefficient models. Electron. J. Stat. 2019, 13, 5334–5359. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. How Neighborhood Characteristics Influence Neighborhood Crimes: A Bayesian Hierarchical Spatial Analysis. Int. J. Environ. Res. Public Health 2022, 19, 11416. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Lam, Y.F. Comparative assessments and insights of data openness of 50 smart cities in air quality aspects. Sustain. Cities Soc. 2021, 69, 102868. [Google Scholar] [CrossRef]
- Teodorowski, P.; Jones, E.; Tahir, N.; Ahmed, S.; Frith, L. Public involvement and engagement in big data research: Protocol for a scoping review and a systematic review of delivery and effectiveness of strategies for involvement and engagement. BMJ Open 2021, 11, e050167. [Google Scholar] [CrossRef]
- Kong, X.J.; Liu, X.T.; Jedari, B.; Li, M.L.; Wan, L.T.; Xia, F. Mobile Crowdsourcing in Smart Cities: Technologies, Applications, and Future Challenges. IEEE Internet Things J. 2019, 6, 8095–8113. [Google Scholar] [CrossRef]
- Diop, E.B.; Chenal, J.; Tekouabou, S.C.K.; Azmi, R. Crowdsourcing Public Engagement for Urban Planning in the Global South: Methods, Challenges and Suggestions for Future Research. Sustainability 2022, 14, 11461. [Google Scholar] [CrossRef]
- Yucekaya, M.; Uslu, C. An analytical model proposal to design urban open spaces in balance with climate: A case study of Gaziantep. Land Use Pol. 2020, 95, 104564. [Google Scholar] [CrossRef]
- Bachir, D.; Khodabandelou, G.; Gauthier, V.; El Yacoubi, M.; Puchinger, J. Inferring dynamic origin-destination flows by transport mode using mobile phone data. Transp. Res. Pt. C-Emerg. Technol. 2019, 101, 254–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Meng, W.D.; Hou, X.S. The impact of high-speed rails on urban economy: An investigation using night lighting data of Chinese cities. Res. Transp. Econ. 2020, 80, 13. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Wang, J.; Meng, B.; Ji, H.M.; Wang, S.H.; Zhi, G.Q.; Liu, J.; Shi, C.S. Quantifying Spatiotemporal Heterogeneities in PM2.5-Related Health and Associated Determinants Using Geospatial Big Data: A Case Study in Beijing. Remote Sens. 2022, 14, 4012. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, B.B.; Chen, X.M.; Zhu, C.M.; Gan, M.Y. Multidimensional Evaluation of the Quality of Rural Life Using Big Data from the Perspective of Common Prosperity. Int. J. Environ. Res. Public Health 2022, 19, 14166. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Wang, S.H.; Dong, J.H.; Shen, Z.C.; Xu, S.W. An analysis of the domestic resumption of social production and life under the COVID-19 epidemic. PLoS ONE 2020, 15, e0236387. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. https://doi.org/10.3390/rs15051307
Yu D, Fang C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sensing. 2023; 15(5):1307. https://doi.org/10.3390/rs15051307
Chicago/Turabian StyleYu, Danlin, and Chuanglin Fang. 2023. "Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades" Remote Sensing 15, no. 5: 1307. https://doi.org/10.3390/rs15051307
APA StyleYu, D., & Fang, C. (2023). Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sensing, 15(5), 1307. https://doi.org/10.3390/rs15051307