Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methodology
3. Results
3.1. Landslide Inventory
3.2. Spatial Pattern of Coseismic Landslides with Epicentral Distance
3.3. Controlling Factors of Coseismic Landslide Distribution
3.3.1. Topographic Factors
3.3.2. Seismogenic Factor
3.3.3. Geological Factor
4. Discussion
4.1. Landslide Intensity Mapping
4.2. Tectonic Genesis for the Discrepancy of Landslide Distribution
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, B.; Hu, K.-H.; Yang, Z.-J.; Liu, Q.; Zou, Q.; Chen, H.-Y.; Zhang, B.; Zhang, W.-F.; Zhu, L.; Su, L.-J. Geomorphic and tectonic controls of landslides induced by the 2022 Luding earthquake. J. Mt. Sci. 2022, 19, 3323–3345. [Google Scholar] [CrossRef]
- Zou, Y.; Qi, S.W.; Guo, S.F.; Zheng, B.W.; Zhan, Z.F.; He, N.W.; Huang, X.L.; Hou, X.K.; Liu, H.Y. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China. Eng. Geol. 2022, 296, 106477. [Google Scholar] [CrossRef]
- Karakas, G.; Nefeslioglu, H.A.; Kocaman, S.; Buyukdemircioglu, M.; Yurur, T.; Gokceoglu, C. Derivation of earthquake-induced landslide distribution using aerial photogrammetry: The January 24, 2020, Elazig (Turkey) earthquake. Landslides 2021, 18, 2193–2209. [Google Scholar] [CrossRef]
- Miles, S.B.; Keefer, D.K. Evaluation of CAMEL—Comprehensive areal model of earthquake-induced landslides. Eng. Geol. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Wu, W.; Xu, C.; Wang, X.; Tian, Y.; Deng, F. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. J. Earth Sci. 2020, 31, 853–866. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. Seismically induced landslide hazard and exposure modelling in Southern California based on the 1994 Northridge, California earthquake event. Landslides 2015, 12, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.T.; Turcotte, D.L.; Rundle, J.B.; Chen, C.C. Aftershock Statistics of the 1999 Chi-Chi, Taiwan Earthquake and the Concept of Omori Times. Pure Appl. Geophys. 2013, 170, 221–228. [Google Scholar] [CrossRef]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Cui, P.; Zhang, J.Q.; Yang, Z.J.; Chen, X.Q.; You, Y.; Li, Y. Activity and distribution of geohazards induced by the Lushan earthquake, April 20, 2013. Nat. Hazards 2014, 73, 711–726. [Google Scholar] [CrossRef]
- Wang, G. Comparison of the landslides triggered by the 2013 Lushan earthquake with those triggered by the strong 2008 Wenchuan earthquake in areas with high seismic intensities. Bull. Eng. Geol. Environ. 2015, 74, 77–89. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Shyu, J.B.H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 2015, 248, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-W.; Sato, M.; Yamada, R.; Iida, T.; Matsuda, M.; Chen, H. Modeling of earthquake-induced landslide distributions based on the active fault parameters. Eng. Geol. 2022, 303, 106640. [Google Scholar] [CrossRef]
- Chang, M.; Cui, P.; Xu, L.; Zhou, Y. The spatial distribution characteristics of coseismic landslides triggered by the Ms7.0 Lushan earthquake and Ms7.0 Jiuzhaigou earthquake in southwest China. Environ. Sci. Pollut. Res. 2021, 28, 20549–20569. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Peng, J.; Xu, C.; Li, Z.; Densmore, A.; Milledge, D.; Iqbal, J.; Cui, Y. Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology 2018, 314, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xu, C.; Ma, S.; Xu, X.; Wang, S.; Zhang, H. Inventory and Spatial Distribution of Landslides Triggered by the 8th August 2017 MW 6.5 Jiuzhaigou Earthquake, China. J. Earth Sci. 2019, 30, 206–217. [Google Scholar] [CrossRef]
- Has, B.; Noro, T.; Maruyama, K.; Nakamura, A.; Ogawa, K.; Onoda, S. Characteristics of earthquake-induced landslides in a heavy snowfall region—Landslides triggered by the northern Nagano prefecture earthquake, March 12, 2011, Japan. Landslides 2012, 9, 539–546. [Google Scholar] [CrossRef]
- Guo, C.-w.; Huang, Y.-d.; Yao, L.-k.; Alradi, H. Size and spatial distribution of landslides induced by the 2015 Gorkha earthquake in the Bhote Koshi river watershed. J. Mt. Sci. 2017, 14, 1938–1950. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Xu, Q.; Zhan, W.; Dai, L.; Li, Y.; Pei, X.; Yang, Q.; Huang, R. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 2018, 15, 967–983. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Wang, M. A method for quick assessment of earthquake-triggered landslide hazards: A case study of the Mw6.1 2014 Ludian, China earthquake. Bull. Eng. Geol. Environ. 2019, 78, 2449–2458. [Google Scholar] [CrossRef]
- Collins, B.D.; Kayen, R.; Tanaka, Y. Spatial distribution of landslides triggered from the 2007 Niigata Chuetsu–Oki Japan Earthquake. Eng. Geol. 2012, 127, 14–26. [Google Scholar] [CrossRef]
- Meunier, P.; Hovius, N.; Haines, A.J. Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Meunier, P.; Hovius, N.; Haines, J.A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 2008, 275, 221–232. [Google Scholar] [CrossRef]
- Lee, C.-T.; Huang, C.-C.; Lee, J.-F.; Pan, K.-L.; Lin, M.-L.; Dong, J.-J. Statistical approach to earthquake-induced landslide susceptibility. Eng. Geol. 2008, 100, 43–58. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X. Statistical analysis of landslides caused by the Mw 6.9 Yushu, China, earthquake of April 14, 2010. Nat. Hazards 2014, 72, 871–893. [Google Scholar] [CrossRef]
- Zhong, X.M.; Xu, X.W.; Chen, W.K.; Liang, Y.X.; Sun, Q.Y. Characteristics of loess landslides triggered by the 1927 Mw8.0 earthquake that occurred in Gulang County, Gansu Province, China. Front. Environ. Sci. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Rodrıguez, C.; Bommer, J.; Chandler, R. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. 1999, 18, 325–346. [Google Scholar] [CrossRef]
- Keefer, D.K. Statistical analysis of an earthquake-induced landslide distribution—The 1989 Loma Prieta, California event. Eng. Geol. 2000, 58, 231–249. [Google Scholar] [CrossRef]
- Huang, F.M.; Cao, Z.S.; Jiang, S.H.; Zhou, C.B.; Huang, J.S.; Guo, Z.Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Su, F.H.; Cui, P.; Zhang, J.Q.; Xiang, L.Z. Susceptibility assessment of landslides caused by the wenchuan earthquake using a logistic regression model. J. Mt. Sci. 2010, 7, 234–245. [Google Scholar] [CrossRef]
- Zhao, B.; Li, W.L.; Su, L.J.; Wang, Y.S.; Wu, H.C. Insights into the Landslides Triggered by the 2022 Lushan Ms 6.1 Earthquake: Spatial Distribution and Controls. Remote Sens. 2022, 14, 4365. [Google Scholar] [CrossRef]
- Zhao, B.; Liao, H.J.; Su, L.J. Landslides triggered by the 2018 Lombok earthquake sequence, Indonesia. Catena 2021, 207, 105676. [Google Scholar] [CrossRef]
- He, X.L.; Xu, C. Spatial distribution and tectonic significance of the landslides triggered by the 2021 Ms6.4 Yangbi earthquake, Yunnan, China. Front. Earth Sci. 2022, 10, 1–17. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Lu, J.Y.; Li, W.L.; Zhan, W.W.; Tie, Y.B. Distribution and Mobility of Coseismic Landslides Triggered by the 2018 Hokkaido Earthquake in Japan. Remote Sens. 2022, 14, 3957. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wang, F.W.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Gorum, T.; Fan, X.M.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G.H. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Martino, S.; Bozzano, F.; Caporossi, P.; D’angiò, D.; Della Seta, M.; Esposito, C.; Fantini, A.; Fiorucci, M.; Giannini, L.; Iannucci, R. Impact of landslides on transportation routes during the 2016–2017 Central Italy seismic sequence. Landslides 2019, 16, 1221–1241. [Google Scholar] [CrossRef]
- Shao, X.Y.; Ma, S.Y.; Xu, C. Distribution and characteristics of shallow landslides triggered by the 2018 Mw 7.5 Palu earthquake, Indonesia. Landslides 2022, 20, 1–19. [Google Scholar] [CrossRef]
- Tang, R.; Fan, X.; Scaringi, G.; Xu, Q.; van Westen, C.J.; Ren, J.; Havenith, H.-B. Distinctive controls on the distribution of river-damming and non-damming landslides induced by the 2008 Wenchuan earthquake. Bull. Eng. Geol. Environ. 2019, 78, 4075–4093. [Google Scholar] [CrossRef]
- Keefer, D.K. Investigating landslides caused by earthquakes—A historical review. Surv. Geophys. 2002, 23, 473–510. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Xu, X.W.; Zhou, B.G.; Yu, G.H. Revisions of the M 8.0 Wenchuan earthquake seismic intensity map based on co-seismic landslide abundance. Nat. Hazards 2013, 69, 1459–1476. [Google Scholar] [CrossRef]
- Sato, H.P.; Harp, E.L. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Havenith, H.B.; Vanini, M.; Jongmans, D.; Faccioli, E. Initiation of earthquake-induced slope failure: Influence of topographical and other site specific amplification effects. J. Seismol. 2003, 7, 397–412. [Google Scholar] [CrossRef]
- Celebi, M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bull. Seismol. Soc. Amer. 1987, 77, 1147–1167. [Google Scholar] [CrossRef]
- Qi, S.; Xu, Q.; Lan, H.; Zhang, B.; Liu, J. Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake, China. Eng. Geol. 2010, 116, 95–108. [Google Scholar] [CrossRef]
- Osmundsen, P.T.; Henderson, I.; Lauknes, T.R.; Larsen, Y.; Redfield, T.F.; Dehls, J. Active normal fault control on landscape and rock-slope failure in northern Norway. Geology 2009, 37, 135–138. [Google Scholar] [CrossRef]
- Rossi, A.; Tertulliani, A.; Azzaro, R.; Graziani, L.; Rovida, A.; Maramai, A.; Pessina, V.; Hailemikael, S.; Buffarini, G.; Bernardini, F.; et al. The 2016-2017 earthquake sequence in Central Italy: Macroseismic survey and damage scenario through the EMS-98 intensity assessment. Bull. Earthq. Eng. 2019, 17, 2407–2431. [Google Scholar] [CrossRef]
- Michetti, A.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J. Environmental seismic intensity scale-ESI 2007. Mem. Descr. Carta Geol. D’Ital 2007, 74, 7–23. [Google Scholar]
- Serva, L.; Vittori, E.; Comerci, V.; Esposito, E.; Guerrieri, L.; Michetti, A.M.; Mohammadioun, B.; Mohammadioun, G.C.; Porfido, S.; Tatevossian, R.E. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale. Pure Appl. Geophys. 2016, 173, 1479–1515. [Google Scholar] [CrossRef]
- Gosar, A. Application of Environmental Seismic Intensity scale (ESI 2007) to Krn Mountains 1998 M-w=5.6 earthquake (NW Slovenia) with emphasis on rockfalls. Nat. Hazards Earth Syst. Sci. 2012, 12, 1659–1670. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Iida, T.; Yamada, R. Effects of active fault types on earthquake-induced deep-seated landslides: A study of historical cases in Japan. Geomorphology 2017, 295, 680–689. [Google Scholar] [CrossRef]
- Zuccaro, G.; De Gregorio, D.; Titirla, M.; Modano, M.; Rosati, L. On the simulation of the seimic energy transmission mechanisms. Ing. Sismica 2018, 35, 109–130. [Google Scholar] [CrossRef]
- Sun, D.; Yang, T.; Cao, N.; Qin, L.; Hu, X.; Wei, M.; Meng, M. Characteristics and Prevention of Coseismic Geohazard Induced by Luding Ms 6.8 Earthquake, Sichuan, China. Earth Sci. Front. 2022, 1, 1–18. [Google Scholar]
- Borrelli, L.; Coniglio, S.; Critelli, S.; La Barbera, A.; Gulla, G. Weathering grade in granitoid rocks: The San Giovanni in Fiore area (Calabria, Italy). J. Maps 2016, 12, 260–275. [Google Scholar] [CrossRef] [Green Version]
Classification | Landslide Area/m2 | Landslide Number | Total Ratio % |
---|---|---|---|
I | areas < 1000 | 2337 | 37.50 |
II | 1000 ≤ areas < 5000 | 2409 | 38.64 |
III | 5000 ≤ areas < 10,000 | 720 | 11.56 |
IV | 10,000 ≤ areas < 50,000 | 688 | 11.04 |
V | areas ≥ 50,000 | 79 | 1.26 |
Total | 6233 | 100 |
Intensity Level | LAD (m2/km2) | LND | Macro-Epicentral Distance (km) |
---|---|---|---|
high-prone | 50,000 | 10 | 11.5 |
mid-prone | 25,000 | 5 | 22.9 |
low-prone | 18,000 | 1 | 39.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Pang, B.; Dong, W.; Li, D. Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China. Remote Sens. 2023, 15, 1323. https://doi.org/10.3390/rs15051323
Yang Z, Pang B, Dong W, Li D. Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China. Remote Sensing. 2023; 15(5):1323. https://doi.org/10.3390/rs15051323
Chicago/Turabian StyleYang, Zongji, Bo Pang, Wufan Dong, and Dehua Li. 2023. "Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China" Remote Sensing 15, no. 5: 1323. https://doi.org/10.3390/rs15051323
APA StyleYang, Z., Pang, B., Dong, W., & Li, D. (2023). Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China. Remote Sensing, 15(5), 1323. https://doi.org/10.3390/rs15051323