Evaluating the Sensitivity of Polarimetric Features Related to Rotation Domain and Mapping Chinese Fir AGB Using Quad-Polarimetric SAR Images
Abstract
:1. Introduction
2. Study Area and Collected Data
2.1. Study Area
2.2. Ground Data
2.3. Remote Sensing Data
3. Methodology
3.1. Backscattering Coefficient and Its Derived Features
3.2. Features Extracted from Polarization Decomposition
3.3. Polarimetric Features in the Rotation Domain
3.3.1. Polarimetric Features Extracted from Oscillation Parameters
3.3.2. Polarimetric Coherence Features in Rotation Domain
3.4. Sensitivity of Polarimetric Features
3.5. Feature Selection with SI and Mapping AGB
4. Results
4.1. Response Analysis of Forest Parameters and Polarization Features
4.2. The Results of Sensitivity
4.3. The Results of Feature Selection Based on SI
4.4. Mapping Forest AGB Using Various Types of Feature Sets
4.5. Results of Mapped Forest AGB with Combined Feature Sets
5. Discussion
5.1. Sensitivity between Forest Parameters and Polarimetric Features
5.2. Feature Selection and Compensation Effect
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carnus, J.M.; Parrotta, J.; Brockerhoff, E.G.; Arbez, M.; Jactel, H.; Kremer, A.; Lamb, D.; O’Hara, K.; Walters, B. Planted forests and biodiversity. Soc. Am. For. 2006, 104, 65–77. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593. [Google Scholar] [CrossRef] [Green Version]
- Dengsheng, L.U. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Remote Sens. 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Saatchi, S.; Marlier, M.; Chazdon, R.L.; Clark, D.B.; Russell, A.E. Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sens. Environ. 2011, 115, 2836–2849. [Google Scholar] [CrossRef]
- Mandal, D.; Hosseini, M.; McNairn, H.; Kumar, V.; Bhattacharya, A.; Rao, Y.; Mitchell, S.; Robertson, L.D.; Davidson, A.; Dabrowska-Zielinska, K. An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101893. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; McNairn, H.; Bhattacharya, A.; Rao, Y. Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 24–34. [Google Scholar] [CrossRef]
- Shuai, G.; Zhang, J.; Basso, B.; Pan, Y.; Zhu, X.; Zhu, S.; Liu, H. Multi-temporal RADARSAT-2 polarimetric SAR for maize mapping supported by segmentations from high-resolution optical image. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 1–15. [Google Scholar] [CrossRef]
- Hamdan, O.; Aziz, H.K.; Hasmadi, I.M. L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. Remote Sens. Environ. 2014, 155, 69–78. [Google Scholar] [CrossRef]
- Thiel, C.; Schmullius, C. The potential of ALOS PALSAR backscatter and InSAR coherence for forest growing stock volume estimation in Central Siberia. Remote Sens. Environ. 2016, 173, 258–273. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric ALOS PALSAR time series in mapping biomass of boreal forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Zoungrana, J.-B.B.; Dimobe, K.; Ouattara, B.; Vadrevu, K.P.; Tondoh, J.E. Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets-A case study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
- Liao, Z.; He, B.; Quan, X. Potential of texture from SAR tomographic images for forest aboveground biomass estimation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102049. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Mapping growing stem volume of chinese fir plantation using a saturation-based multivariate method and Quad-polarimetric SAR images. Remote Sens. 2019, 11, 1872. [Google Scholar] [CrossRef] [Green Version]
- Nesha, M.K.; Hussin, Y.A.; van Leeuwen, L.M.; Sulistioadi, Y.B. Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102158. [Google Scholar] [CrossRef]
- Peregon, A.; Yamagata, Y. The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia. Remote Sens. Environ. 2013, 137, 139–146. [Google Scholar] [CrossRef]
- Santoro, M.; Eriksson, L.; Askne, J.; Schmullius, C. Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter. Int. J. Remote Sens. 2006, 27, 3425–3454. [Google Scholar] [CrossRef]
- Suzuki, R.; Kim, Y.; Ishii, R. Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska. Polar Sci. 2013, 7, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Garestier, F. Pol-InSAR sensitivity to hemi-boreal forest structure at L-and P-bands. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102213. [Google Scholar] [CrossRef]
- Li, X.; Ye, Z.; Long, J.; Zheng, H.; Lin, H. Inversion of Coniferous Forest Stock Volume Based on Backscatter and InSAR Coherence Factors of Sentinel-1 Hyper-Temporal Images and Spectral Variables of Landsat 8 OLI. Remote Sens. 2022, 14, 2754. [Google Scholar] [CrossRef]
- Liao, Z.; He, B.; Shi, Y. Improved forest biomass estimation based on P-band repeat-pass PolInSAR data across different forest sites. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103088. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Krogager, E. New decomposition of the radar target scattering matrix. Electron. Lett. 1990, 18, 1525–1527. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y. Model-based six-component scattering matrix power decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5687–5704. [Google Scholar] [CrossRef]
- Singh, G.; Malik, R.; Mohanty, S.; Rathore, V.S.; Yamada, K.; Umemura, M.; Yamaguchi, Y. Seven-component scattering power decomposition of POLSAR coherency matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8382. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Park, S.-E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2012, 51, 3014–3022. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci. Remote Sens. Lett. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Chen, S.-W.; Wang, X.-S.; Sato, M. Uniform polarimetric matrix rotation theory and its applications. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4756–4770. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, X.S.; Xiao, S.P. PolSAR target scattering interpretation in rotation domain: Theory and application. J. Eng. 2019, 2019, 7649–7652. [Google Scholar] [CrossRef]
- Tao, C.; Chen, S.; Li, Y.; Xiao, S. PolSAR land cover classification based on roll-invariant and selected hidden polarimetric features in the rotation domain. Remote Sens. 2017, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 485. [Google Scholar] [CrossRef] [Green Version]
- Periasamy, S. Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sens. Environ. 2018, 217, 537–549. [Google Scholar] [CrossRef]
- Bouvet, A.; Mermoz, S.; Le Toan, T.; Villard, L.; Mathieu, R.; Naidoo, L.; Asner, G.P. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 2018, 206, 156–173. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. Remote Sens. 2021, 13, 3910. [Google Scholar] [CrossRef]
- Fjab, C.; Mk, D.; Kmab, C.; Song, C.; Jlab, C.; Hua, S. Estimating the aboveground biomass of coniferous Forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar]
- Liu, Z.; Ye, Z.; Xu, X.; Lin, H.; Zhang, T.; Long, J. Mapping Forest Stock Volume Based on Growth Characteristics of Crown Using Multi-Temporal Landsat 8 OLI and ZY-3 Stereo Images in Planted Eucalyptus Forest. Remote Sens. 2022, 14, 5082. [Google Scholar] [CrossRef]
- Pavlov, Y.L. Random Forests. Karelian Centre Russian. Acad. Sci. Petrozavodsk 1997, 45, 5–32. [Google Scholar]
- Xu, X.; Lin, H.; Liu, Z.; Ye, Z.; Li, X.; Long, J. A Combined Strategy of Improved Variable Selection and Ensemble Algorithm to Map the Growing Stem Volume of Planted Coniferous Forest. Remote Sens. 2021, 13, 4631. [Google Scholar] [CrossRef]
- Persson, H.J.; Jonzén, J.; Nilsson, M. Combining TanDEM-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102275. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M. Exploring combinations of multi-temporal and multi-frequency radar backscatter observations to estimate above-ground biomass of tropical forest. Remote Sens. Environ. 2019, 232, 111313. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Wang, C.; Lin, H.; Long, J.; Zhao, L.; Fu, H.; Liu, Z. Forest Growing Stock Volume Estimation in Subtropical Mountain Areas Using PALSAR-2 L-Band PolSAR Data. Forests 2019, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Isoguchi, O.; Tadono, T.; Isono, K. PALSAR Radiometric and Geometric Calibration. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3915–3932. [Google Scholar] [CrossRef]
- Oh, Y.; Chang, J.G.; Shoshany, M. Polarimetric Radar Vegetation Index for Biomass Estimation in Desert Fringe Ecosystems. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7102–7108. [Google Scholar]
- Chowdhury, T.A.; Thiel, C.; Schmullius, C. Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest. Remote Sens. Environ. 2014, 155, 129–144. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, H.; Long, J.; Zhang, M.; Liu, Z. Analyzing the Saturation of Growing Stem Volume Based on ZY-3 Stereo and Multispectral Images in Planted Coniferous Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 50–61. [Google Scholar] [CrossRef]
Sensor | Date of Acquired | Bands | Weather | Incidence Angle | Azimuth Resolution | Range Resolution | Polarimetric Modes |
---|---|---|---|---|---|---|---|
ALOS-2 PALSAR | 16 June 2016 | L-band | Rainy | 38.99° | 2.83 m | 2.86 m | HH, HV, VH, VV |
ALOS-2 PALSAR | 30 June 2016 | L-band | Sunny | 38.99° | 2.83 m | 2.86 m | HH, HV, VH, VV |
Derived Features | Definition |
---|---|
Backscatter coefficient ratio | / |
Backscatter coefficient ratio | / |
Backscatter coefficient ratio | / |
Polarization discrimination index | PDR =)/ + ) |
Radar vegetation index | RVI = 8/++2) |
Texture features | (Mean, ME), (Homogeneity, HO), (Variance, VA), (Correlation, CO), (Second moment, SM), (Dissimilarity, DI), (Entropy, EN), (Contrast, CT) |
Sort | Feature |
---|---|
A | , , , |
B | , |
2, 4, 8 | |
,,,, |
RPC Features | Meaning |
---|---|
Maximum value of RPC feature | |
Minimum value of the RPC feature | |
Average value of the RPC feature | |
Undulation value of RPC feature | |
Contrast ratio value of RPC feature | |
Maximize rotation angle of RPC feature | |
Minimize rotation angle of RPC feature |
SAR Image | Feature Set | Feature Selection | Feature Number | R2 | RMSE(t/ha) | rRMSE (%) |
---|---|---|---|---|---|---|
16 June | BC | PSS | 6 | 0.13 | 68.9 | 39.7 |
SIS | 5 | 0.13 | 68.5 | 39.7 | ||
C4 | PSS | 5 | 0.18 | 66.6 | 38.6 | |
SIS | 5 | 0.35 | 59.2 | 34.3 | ||
Ro | PSS | 8 | 0.31 | 60.3 | 35.5 | |
SIS | 8 | 0.45 | 54.5 | 31.6 | ||
30 June | BC | PSS | 3 | 0.15 | 67.4 | 39.6 |
SIS | 4 | 0.30 | 61.5 | 35.6 | ||
C4 | PSS | 3 | 0.31 | 61.1 | 35.8 | |
SIS | 4 | 0.34 | 59.6 | 34.5 | ||
Ro | PSS | 5 | 0.32 | 62.0 | 35.7 | |
SIS | 7 | 0.47 | 53.2 | 30.8 |
SAR Image | Variable Set | R2 | RMSE (t/ha) | rRMSE (%) |
---|---|---|---|---|
16 June | BC + C4 | 0.36 | 58.5 | 33.9 |
BC + Ro | 0.46 | 54.1 | 31.3 | |
C4 + Ro | 0.62 | 44.9 | 26.0 | |
BC + C4 + Ro | 0.68 | 41.8 | 24.2 | |
30 June | BC + C4 | 0.48 | 52.8 | 30.6 |
BC + Ro | 0.61 | 45.6 | 26.4 | |
C4 + Ro | 0.65 | 43.4 | 25.1 | |
BC + C4 + Ro | 0.72 | 38.8 | 22.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Lin, H.; Long, J.; Zheng, H.; Ye, Z.; Liu, Z. Evaluating the Sensitivity of Polarimetric Features Related to Rotation Domain and Mapping Chinese Fir AGB Using Quad-Polarimetric SAR Images. Remote Sens. 2023, 15, 1519. https://doi.org/10.3390/rs15061519
Zhang T, Lin H, Long J, Zheng H, Ye Z, Liu Z. Evaluating the Sensitivity of Polarimetric Features Related to Rotation Domain and Mapping Chinese Fir AGB Using Quad-Polarimetric SAR Images. Remote Sensing. 2023; 15(6):1519. https://doi.org/10.3390/rs15061519
Chicago/Turabian StyleZhang, Tingchen, Hui Lin, Jiangping Long, Huanna Zheng, Zilin Ye, and Zhaohua Liu. 2023. "Evaluating the Sensitivity of Polarimetric Features Related to Rotation Domain and Mapping Chinese Fir AGB Using Quad-Polarimetric SAR Images" Remote Sensing 15, no. 6: 1519. https://doi.org/10.3390/rs15061519
APA StyleZhang, T., Lin, H., Long, J., Zheng, H., Ye, Z., & Liu, Z. (2023). Evaluating the Sensitivity of Polarimetric Features Related to Rotation Domain and Mapping Chinese Fir AGB Using Quad-Polarimetric SAR Images. Remote Sensing, 15(6), 1519. https://doi.org/10.3390/rs15061519