Improved the Characterization of Flood Monitoring Based on Reconstructed Daily GRACE Solutions over the Haihe River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. GRACE/GRACE-FO Solutions
2.2.2. Meteorological Data
2.2.3. Auxiliary Datasets
2.3. Methods
2.3.1. Reconstruction of Daily TWSA
2.3.2. Time Series Decomposition
2.3.3. Flood Monitoring Indexes
2.3.4. Evaluation Metrics
3. Results
3.1. Comparisons of Different GRACE-Filled Solutions
3.2. Comparisons of Different Meteorological Products
3.3. Evaluations of the Reconstructed TWSA Solutions
4. Discussions
4.1. Evolution of the Rainfall Process
4.2. Application of the Reconstructed daily TWSA
4.3. Spatiotemporal Analysis of the Short-Term Flood Event in 2016
4.3.1. Temporal Variation of the Flood
4.3.2. Spatial Distribution of the Flood
4.4. Response of Different Components of Soil Moisture in the Flood Event
5. Conclusions
- Compared to the GRACE TWSA and other daily TWSA products, daily TWSA reconstructed based on CN05.1-CN05.1 perform best with the NSE of 0.96 and 0.52 ~ 0.81 among the ten combinations. The daily TWSA reconstructed by CN05.1-CN05.1 better reflects the dramatic increase of EWH than GLDAS-TWSA, JPL-ERA5, and ITSG-Grace2018 during the 2016 short-term flood event. In addition, the precipitation variable may contribute more to the model than temperature by comparing different reconstructed results.
- Three daily flood monitoring indexes developed by reconstructed daily TWSA identify three recorded significant flood events in July 2012, July 2016, and July~October 2021 in the HRB. Moreover, FPI, WSDI, and CCDI reveal the fact that the spatial distribution in the 2016 short-term flood event extends from the southwest to the northeast, which is consistent with the track of the rainfall center. The spatiotemporal performance of FPI, WSDI, and CCDI validates the effectiveness of the daily flood monitoring indexes, which greatly improves the temporal characterization of flood monitoring.
- During the 2016 short-term flood event, FPI and CCDI may have spatially overestimated the damage coverage of the flood with values of 56% and 66%, respectively. Importantly, the spatial impact of the flood assessed by WSDI is more consistent with the government report, and the quantified results show that 48% of the basin is damaged by the flood. Moreover, different parts of SM are compared, indicating the damage of this flood occurred mainly in the root zone. This paper not only contributes a method to GRACE TWSA for monitoring short-term flood events but also provides a potential reference for TWSA to be applied to short-term studies in more fields (e.g., sub-monthly evolution of drought and crustal movement). Notably, limited by input variables, the methodology is only applicable to areas where rainfall and temperature are the main factors affecting TWSA.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Change 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Z.; Guo, S.; Wu, X.; Yin, J.; Wang, J.; Lai, C.; Gong, Q. High effectiveness of GRACE data in daily-scale flood modeling: Case study in the Xijiang River Basin, China. Nat. Hazards 2022, 113, 507–526. [Google Scholar] [CrossRef]
- Pangali Sharma, T.P.; Zhang, J.; Khanal, N.R.; Nepal, P.; Pangali Sharma, B.P.; Nanzad, L.; Gautam, Y. Household Vulnerability to Flood Disasters among Tharu Community, Western Nepal. Sustainability 2022, 14, 12386. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J. Assessing Terrestrial Water Storage and Flood Potential Using GRACE Data in the Yangtze River Basin, China. Remote Sens. 2017, 9, 1011. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhang, C.; Zhang, J.; Zou, X.; Mo, Y.; Tian, Y. Potential linkages of precipitation extremes in Beijing-Tianjin-Hebei region, China, with large-scale climate patterns using wavelet-based approaches. Theor. Appl. Climatol. 2020, 141, 1251–1269. [Google Scholar] [CrossRef]
- Huang, Z.; Jiao, J.J.; Luo, X.; Pan, Y.; Jin, T. Drought and Flood Characterization and Connection to Climate Variability in the Pearl River Basin in Southern China Using Long-Term GRACE and Reanalysis Data. J. Clim. 2021, 34, 2053–2078. [Google Scholar] [CrossRef]
- The Ministry of Water Resources of the People’s Republic of China. 2020 Bulletin of Flood and Drought Disasters in China. pp. 15–30. Available online: http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/202112/t20211208_1554245.html (accessed on 10 May 2022).
- Hagen, E.; Lu, X.X. Let us create flood hazard maps for developing countries. Nat. Hazards. 2011, 58, 841–843. [Google Scholar] [CrossRef]
- Burgan, H.I.; Icaga, Y. Flood analysis using Adaptive Hydraulics (AdH) model in Akarcay Basin. Tek. Dergi. 2019, 30, 9029–9051. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, G.A.M.; Bates, P.; Ozdemir, H. Modelling urban floods at submetre resolution: Challenges or opportunities for flood risk management? J. Flood Risk Manag. 2018, 11, S855–S865. [Google Scholar] [CrossRef] [Green Version]
- Carreño Conde, F.; De Mata Muñoz, M. Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study. Water 2019, 11, 2454. [Google Scholar] [CrossRef] [Green Version]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Wang, J.; Huang, Y.; Zhou, K.; Ding, X.; Fu, J. The Review of GRACE Data Applications in Terrestrial Hydrology Monitoring. Adv. Meteorol. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Koutroulis, A.G.; Komma, J.; Tsanis, I.K.; Wagner, W.; Blöschl, G. Initial soil moisture effects on flash flood generation—A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol. 2016, 541, 206–217. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Peel, M.C. Changes in Antecedent Soil Moisture Modulate Flood Seasonality in a Changing Climate. Water Resour. Res. 2020, 56, e2019WR026300. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, L11501. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Hsu, H.; Zhong, M.; Yun, M. Requirements Analysis for Future Satellite Gravity Mission Improved-GRACE. Surv. Geophys. 2015, 36, 87–109. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res. 2010, 46, 12. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L9607. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reager, J.T.; Famiglietti, J.S. Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett. 2009, 36, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhou, I. Performance Evaluation of a Potential Component of an Early Flood Warning System—A Case Study of the 2012 Flood, Lower Niger River Basin, Nigeria. Remote Sens. 2019, 11, 1970. [Google Scholar]
- Xiong, J.; Wang, Z. Exploration of large-scale flood monitoring in the Pearl River basin based on GRACE satellites. J. Hydroelectr. Eng. 2021, 40, 68–78. [Google Scholar]
- Long, D.; Shen, Y.; Sun, A.; Hong, Y.; Longuevergne, L.; Yang, Y.; Li, B.; Chen, L. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sens. Environ. 2014, 155, 145–160. [Google Scholar] [CrossRef]
- Sinha, D.; Syed, T.H.; Reager, J.T. Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a metric for drought characterization: A case study over major Indian river basins. J. Hydrol. 2019, 572, 294–307. [Google Scholar] [CrossRef]
- Nigatu, Z.M.; Fan, D.; You, W.; Melesse, A.M. Hydroclimatic Extremes Evaluation Using GRACE/GRACE-FO and Multidecadal Climatic Variables over the Nile River Basin. Remote Sens. 2021, 13, 651. [Google Scholar] [CrossRef]
- Tayfur, G. Discrepancy precipitation index for monitoring meteorological drought. J. Hydrol. 2021, 597, 126174. [Google Scholar] [CrossRef]
- Agboma, C.O.; Yirdaw, S.Z.; Snelgrove, K.R. Intercomparison of the total storage deficit index (TSDI) over two Canadian Prairie catchments. J. Hydrol. 2009, 374, 351–359. [Google Scholar] [CrossRef]
- Xiao, C.; Zhong, Y.; Feng, W.; Gao, W.; Wang, Z.; Zhong, M.; Ji, B. Monitoring the catastrophic flood with GRACE-FO and near-real-time precipitation data in northern Henan Province of China in July 2021. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 16, 89–101. [Google Scholar] [CrossRef]
- Kurtenbach, E.; Eicker, A.; Mayer-Gürr, T.; Holschneider, M.; Hayn, M.; Fuhrmann, M.; Kusche, J. Improved daily GRACE gravity field solutions using a Kalman smoother. J. Geodyn. 2012, 59–60, 39–48. [Google Scholar] [CrossRef]
- Gouweleeuw, B.T.; Kvas, A.; Gruber, C.; Gain, A.K.; Mayer-Gürr, T.; Flechtner, F.; Güntner, A. Daily GRACE gravity field solutions track major flood events in the Ganges-Brahmaputra Delta. Hydrol. Earth Syst. Sci. 2018, 22, 2867. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Guo, S.; Abhishek; Li, J.; Yin, J. A Novel Standardized Drought and Flood Potential Index Based on Reconstructed Daily GRACE Data. J. Hydrometeorol. 2022, 23, 1419–1438. [Google Scholar] [CrossRef]
- Jiang, Z.; Hsu, Y.; Yuan, L.; Huang, D. Monitoring time-varying terrestrial water storage changes using daily GNSS measurements in Yunnan, southwest China. Remote Sens. Environ. 2021, 254, 112249. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L. GRACE-REC: A reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 2019, 11, 1153–1170. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zou, X.; Yi, S.; Sneeuw, N.; Cai, J.; Li, J. Identifying and separating climate- and human-driven water storage anomalies using GRACE satellite data. Remote Sens. Environ. 2021, 263, 112559. [Google Scholar] [CrossRef]
- Yang, X.; Tian, S.; You, W.; Jiang, Z. Reconstruction of continuous GRACE/GRACE-FO terrestrial water storage anomalies based on time series decomposition. J. Hydrol. 2021, 603, 127018. [Google Scholar] [CrossRef]
- Bai, H.; Ming, Z.; Zhong, Y.; Zhong, M.; Kong, D.; Ji, B. Evaluation of evapotranspiration for exorheic basins in China using an improved estimate of terrestrial water storage change. J. Hydrol. 2022, 610, 127885. [Google Scholar] [CrossRef]
- Hu, S.; Wang, Z.; Lee, J.H.W. Flood control and shrinkage in the Haihe River Mouth. Sci. China Ser. B Chem. 2001, 44, 240–248. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, W.; Yin, W.; Lei, W. Improving the Resolution and Accuracy of Groundwater Level Anomalies Using the Machine Learning-Based Fusion Model in the North China Plain. Sensors 2021, 21, 46. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Yin, W.; Kang, G.; Zhang, G.; Zhang, D. Improving the Accuracy of Water Storage Anomaly Trends Based on a New Statistical Correction Hydrological Model Weighting Method. Remote Sens. 2021, 13, 3583. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation. J. Hydrol. 2015, 528, 206–216. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, W.; Humphrey, V.; Zhong, M. Human-Induced and Climate-Driven Contributions to Water Storage Variations in the Haihe River Basin, China. Remote Sens. 2019, 11, 3050. [Google Scholar] [CrossRef] [Green Version]
- Haihe River Water Conservancy Commission. MWR. 2012 Bulletin of Water Resources in Haihe River Basin. Available online: http://www.hwcc.gov.cn/hwcc/static/szygb/gongbao2012/index.htm (accessed on 11 May 2022).
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Sun, W. Progress and prospect of GRACE Mascon product and its application. Rev. Geophys. Planet. Phys. 2022, 53, 35–52. [Google Scholar]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Chen, J. Satellite gravimetry and mass transport in the earth system. J. Geod. Geodyn. 2019, 10, 402–415. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, W.; Zhong, M.; Ming, Z. Dataset of Reconstructed Terrestrial Water Storage in China Based on Precipitation (2002–2019); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Mo, S.; Zhong, Y.; Forootan, E.; Mehrnegar, N.; Yin, X.; Wu, J.; Feng, W.; Shi, X. Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap. J. Hydrol. 2022, 604, 127244. [Google Scholar] [CrossRef]
- Rateb, A.; Sun, A.; Scanlon, B.R.; Save, H.; Hasan, E. Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework. Earth Space Sci. 2022, 9, e2021EA002162. [Google Scholar] [CrossRef]
- Wu, T.; Zheng, W.; Yin, W.; Zhang, H. Spatiotemporal Characteristics of Drought and Driving Factors Based on the GRACE-Derived Total Storage Deficit Index: A Case Study in Southwest China. Remote Sens. 2021, 13, 79. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Early Precipitation L3 1 Day 0.1 Degree × 0.1 Degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDE_06/summary (accessed on 13 March 2022).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Adler, R.F. TRMM (TMPA) Precipitation L3 1 Day 0.25 Degree × 0.25 Degree V7, Edited by Andrey Savtchenko, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2016. Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary (accessed on 13 March 2022).
- Li, B.; Beaudoing, H.; Rodell, M. NASA/GSFC/HSL, GLDAS Catchment Land Surface Model L4 Daily 0.25 × 0.25 Degree GRACE-DA1 V2.2, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020. Available online: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/summary (accessed on 15 May 2022).
- Xu, Y.; Gao, W.; Shen, Y.; Xu, C.; Shi, Y.; Giogri, F. A Daily Temperature Dataset over China and Its Application in Validating a RCM Simulation. Adv. Atmos. Sci. 2009, 4, 763–772. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shen, L.; Wang, B. How is the precipitation distributed vertically in arid mountain region of Northwest China? J. Geogr. Sci. 2022, 32, 241–258. [Google Scholar] [CrossRef]
- Contractor, S.; Donat, M.G.; Alexander, L.V.; Ziese, M.; Meyer-Christoffer, A.; Schneider, U.; Rustemeier, E.; Becker, A.; Durre, I.; Vose, R.S. Rainfall Estimates on a Gridded Network (REGEN)—A global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci. 2020, 24, 919–943. [Google Scholar] [CrossRef] [Green Version]
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer Gürr, T. ITSG-Grace2018: Overview and Evaluation of a New GRACE-Only Gravity Field Time Series. J. Geophys. Res. Solid Earth 2019, 124, 9332–9344. [Google Scholar] [CrossRef] [Green Version]
- Mayer-Gürr, T.; Behzadpour, S.; Ellmer, M.; Kvas, A.; Klinger, B.; Strasser, S.; Zehentner, N. ITSG-Grace2018—Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Serv. 2018. Available online: https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018 (accessed on 18 July 2022).
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.; Hong, Y.; Scanlon, B.R.; Longuevergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. A global reconstruction of climate-driven subdecadal water storage variability. Geophys. Res. Lett. 2017, 44, 2300–2309. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer, 2nd ed.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surv. Geophys. 2016, 37, 357–395. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Scanlon, B.R.; Longuevergne, L.; Sun, A.Y.; Fernando, D.N.; Save, H. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 2013, 40, 3395–3401. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. ; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Jensen, L.; Eicker, A.; Dobslaw, H.; Stacke, T.; Humphrey, V. Long-Term Wetting and Drying Trends in Land Water Storage Derived From GRACE and CMIP5 Models. J. Geophys. Res. Atmos. 2019, 124, 9808–9823. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhu, X.; Cheng, X.; Gun, Z.; Lin, J.; Zhao, J.; Yao, L.; Zhou, C. Drought assessment of China in 2002–2017 based on a comprehensive drought index. Agric. For. Meteorol. 2022, 319, 108922. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Yin, J.; Guo, S.; Gu, L.; Xiong, F.; Li, N. Integrated flood potential index for flood monitoring in the GRACE era. J. Hydrol. 2021, 603, 127115. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, G.; Han, S.; Yeo, I.; Zhang, M. Improving the resolution of GRACE-based water storage estimates based on machine learning downscaling schemes. J. Hydrol. 2022, 613, 128447. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.D.C.; Yakubu, C.I.; Heck, B. Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 15015. [Google Scholar] [CrossRef]
- The Ministry of Water Resources of the People’s Republic of China. 2016 Bulletin of Flood and Drought Disasters in China. pp. 23–29. Available online: http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/201707/t20170720_966705.html (accessed on 10 June 2022).
- The Department of Water Resoueces of Hebei Province, China. 2016 Bulletin of Water Resources in Hebei. Available online: http://slt.hebei.gov.cn/a/2018/03/02/2018030221906.html (accessed on 12 June 2022).
- The Bureau of Water Resources of Anyang City, Henan Province, China. 2016 Bulletin of Water Resources in Anyang. Available online: https://slj.anyang.gov.cn/2017/12-05/2254922.html (accessed on 12 June 2022).
- The Bureau of Water Resources of Chengde City, Hebei Province, China. 2016 Bulletin of Water Resources in Chengde. Available online: https://www.chengde.gov.cn/art/2018/10/11/art_9943_319281.html (accessed on 25 June 2022).
- Berghuijs, W.R.; Harrigan, S.; Molnar, P.; Slater, L.J.; Kirchner, J.W. The Relative Importance of Different Flood-Generating Mechanisms Across Europe. Water Resour. Res. 2019, 55, 4582–4593. [Google Scholar] [CrossRef] [Green Version]
Data | Temporal Resolution | Spatial Resolution | Time Span | Cover | Sources |
---|---|---|---|---|---|
LPD_CSR | monthly | 0.25° × 0.25° | April 2002~December 2019 | China | [43,50] |
LPD_JPL | monthly | 0.5° × 0.5° | April 2002~December 2019 | China | [43,50] |
BCNN | monthly | 1° × 1° | April 2002~August 2020 | Global | [51] |
BF | monthly | 1° × 1° | April 2002~April 2021 | Global | [52] |
Data | Short Name | Temporal Resolution | Spatial Resolution | Time Span |
---|---|---|---|---|
GRACE TWSA | CSR | monthly | 0.25° × 0.25° | April 2002~January 2022 |
JPL | monthly | 0.5° × 0.5° | April 2002~January 2022 | |
Precipitation (PRE) | GPM | daily | 0.1° × 0.1° | 1 June 2000~10 March 2022 |
TRMM | daily | 0.25° × 0.25° | 1 January 1998~1 January 2020 | |
CPC | daily | 0.5° × 0.5° | 1 January 1979~11 March 2022 | |
CMA | daily | 0.5° × 0.5° | 1 January 1961~31 December 2021 | |
CN05.1 | daily | 0.25° × 0.25° | 1 January 1961~31 December 2021 | |
GLDAS | daily | 0.25° × 0.25° | 1 February 2003~18 January 2022 | |
Temperature (Temp) | GLDAS | daily | 0.25° × 0.25° | 1 February 2003~18 January 2022 |
CN05.1 | daily | 0.25° × 0.25° | 1 January 1961~31 December 2021 | |
Daily TWSA | GLDAS-TWSA | daily | 0.25° × 0.25° | 1 February 2003~18 January 2022 |
JPL-ERA5 | daily | 0.5° × 0.5° | 1 January 1979~31 July 2019 | |
ITSG-Grace2018 | daily | 1° × 1° | 1 April 2002~31 August 2016 | |
Soil moisture anomalies | SMA | daily | 0.25° × 0.25° | 1 February 2003~18 January 2022 |
NSE | GRACE TWSA | Daily TWSA Products |
---|---|---|
GLDAS-GPM | 0.94 | 0.40~0.60 |
GLDAS-TRMM | 0.96 | 0.50~0.75 |
GLDAS-CPC | 0.96 | 0.41~0.57 |
GLDAS-CMA | 0.95 | 0.49~0.60 |
GLDAS-CN05.1 | 0.96 | 0.50~0.80 |
CN05.1-GPM | 0.93 | 0.42~0.58 |
CN05.1-TRMM | 0.96 | 0.53~0.75 |
CN05.1-CPC | 0.96 | 0.42~0.58 |
CN05.1-CMA | 0.95 | 0.48~0.63 |
CN05.1-CN05.1 | 0.96 | 0.52~0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S.; Zheng, W.; Yin, W.; Zhong, Y.; Shen, Y.; Li, K. Improved the Characterization of Flood Monitoring Based on Reconstructed Daily GRACE Solutions over the Haihe River Basin. Remote Sens. 2023, 15, 1564. https://doi.org/10.3390/rs15061564
Nie S, Zheng W, Yin W, Zhong Y, Shen Y, Li K. Improved the Characterization of Flood Monitoring Based on Reconstructed Daily GRACE Solutions over the Haihe River Basin. Remote Sensing. 2023; 15(6):1564. https://doi.org/10.3390/rs15061564
Chicago/Turabian StyleNie, Shengkun, Wei Zheng, Wenjie Yin, Yulong Zhong, Yifan Shen, and Kezhao Li. 2023. "Improved the Characterization of Flood Monitoring Based on Reconstructed Daily GRACE Solutions over the Haihe River Basin" Remote Sensing 15, no. 6: 1564. https://doi.org/10.3390/rs15061564
APA StyleNie, S., Zheng, W., Yin, W., Zhong, Y., Shen, Y., & Li, K. (2023). Improved the Characterization of Flood Monitoring Based on Reconstructed Daily GRACE Solutions over the Haihe River Basin. Remote Sensing, 15(6), 1564. https://doi.org/10.3390/rs15061564