Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology Overview
2.2. Study Area
2.3. Data Overview
2.3.1. Forest Stand Choice and ALS Data
2.3.2. Stereo Satellite and Airborne Imagery
2.4. Methods
2.4.1. Stem Volume Allometry Equations from Harvester Data
2.4.2. Imagery Orientation and Co-Registration with ALS Data
2.4.3. Image-Based and ALS-Based CHM Calculations
2.4.4. Individual Tree Detection from ALS Data
2.4.5. Assessing the Growing Stock with the Area-Based Approach
3. Results
3.1. Species-Specific Allometry between Stem Volume and Tree Height
3.2. Growing Stock Estimation Comparison by Individual Tree Detection Approach
3.3. Growing Stock Estimation Comparison by Area-Based Approach
4. Discussion
4.1. Growing Stock Estimation Based on Individual Tree Detection
4.2. ALS and GeoEye1 Image-Based CHM Performance in Growing Stock Estimation
4.3. Plot Size Choice and Stand/Plot Specificity
4.4. Study Limitations and Practical Implementations
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Optical Sensors | Nr. GCPs | RMSE X (m) | RMSE Y (m) | RMSE Z (m) |
---|---|---|---|---|
GeoEye1 | 18 | 0.31 | 0.35 | 0.33 |
UltraCam | 8 | 0.19 | 0.16 | 0.18 |
Tree Height | |||
---|---|---|---|
a | b | c | |
Scots Pine | 2.334 × 10−2 | −2.41 × 10−3 | 1.10 × 10−4 |
Spruce | 1.450 × 10−2 | −1.47 × 10−3 | 8.00 × 10−5 |
Birch | 3.400 × 10−4 | 4.00 × 10−4 | 3.45 × 10−5 |
Black alder | 1.413 × 10−2 | −1.29 × 10−3 | 7.20 × 10−5 |
References
- Kindermann, G.; McCallum, I.; Fritz, S.; Obersteiner, M. A Global Forest Growing Stock, Biomass and Carbon Map Based on FAO Statistics. Silva Fenn. 2008, 42, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Gschwantner, T.; Alberdi, I.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Breidenbach, J.; Donis, J.; Fischer, C.; et al. Growing Stock Monitoring by European National Forest Inventories: Historical Origins, Current Methods and Harmonisation. For. Ecol. Manag. 2022, 505, 119868. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Mangold, D.; Schäfer, J.; Immitzer, M.; Kattenborn, T.; Koch, B.; Latifi, H. Estimating Stand Density, Biomass and Tree Species from Very High Resolution Stereo-Imagery-towards an All-in-One Sensor for Forestry Applications? Forestry 2017, 90, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.H.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef] [Green Version]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass Equations for Sixty-Five North American Tree Species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Moreno, A.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Achten, W.M.J.; Thivolle-Cazat, A.; Bronisz, K.; et al. Comparison of Carbon Estimation Methods for European Forests. For. Ecol. Manag. 2016, 361, 397–420. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of Methods of Small-Footprint Airborne Laser Scanning for Extracting Forest Inventory Data in Boreal Forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Maltamo, M.; Næsset, E.; Vauhkonen, J. Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies; Springer: Berlin/Heidelberg, Germany, 2014; Volume 27, ISBN 978-94-017-8663-8. [Google Scholar]
- Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341. [Google Scholar] [CrossRef]
- Jacobsen, K. Recent Developments of Digital Cameras and Space Imagery. In Proceedings of the GIS Ostrava Symposium, Ostrava, Czech Republic, 24–26 January 2011. [Google Scholar]
- Iqbal, I.A.; Musk, R.A.; Osborn, J.; Stone, C.; Lucieer, A. A Comparison of Area-Based Forest Attributes Derived from Airborne Laser Scanner, Small-Format and Medium-Format Digital Aerial Photography. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 231–241. [Google Scholar] [CrossRef]
- Mielcarek, M.; Kamińska, A.; Stereńczak, K. Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation. Remote Sens. 2020, 12, 1808. [Google Scholar] [CrossRef]
- Pearse, G.D.; Dash, J.P.; Persson, H.J.; Watt, M.S. Comparison of High-Density LiDAR and Satellite Photogrammetry for Forest Inventory. ISPRS J. Photogramm. Remote Sens. 2018, 142, 257–267. [Google Scholar] [CrossRef]
- Immitzer, M.; Stepper, C.; Böck, S.; Straub, C.; Atzberger, C. Use of WorldView-2 Stereo Imagery and National Forest Inventory Data for Wall-to-Wall Mapping of Growing Stock. For. Ecol. Manag. 2016, 359, 232–246. [Google Scholar] [CrossRef]
- Kattenborn, T.; Maack, J.; Faßnacht, F.; Enßle, F.; Ermert, J.; Koch, B. Mapping Forest Biomass from Space—Fusion of Hyperspectral EO1-Hyperion Data and Tandem-X and WorldView-2 Canopy Height Models. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 359–367. [Google Scholar] [CrossRef]
- Persson, H. Estimation of Boreal Forest Attributes from Very High Resolution Pléiades Data. Remote Sens. 2016, 8, 736. [Google Scholar] [CrossRef] [Green Version]
- Straub, C.; Tian, J.; Seitz, R.; Reinartz, P. Assessment of Cartosat-1 and WorldView-2 Stereo Imagery in Combination with a LiDAR-DTM for Timber Volume Estimation in a Highly Structured Forest in Germany. Forestry 2013, 86, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Hyyppä, J.; Karjalainen, M.; Nurminen, K.; Karila, K.; Vastaranta, M.; Kankare, V.; Kaartinen, H.; Holopainen, M.; Honkavaara, E.; et al. Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes. Remote Sens. 2015, 7, 15933–15954. [Google Scholar] [CrossRef] [Green Version]
- Grīnvalds, A. The Accuracy of Standwise Forest Inventory in Mature Stands. Proc. Latv. Univ. Agric. 2014, 32, 2–8. [Google Scholar] [CrossRef]
- Persson, H.J.; Ståhl, G. Characterizing Uncertainty in Forest Remote Sensing Studies. Remote Sens. 2020, 12, 505. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Wulder, M.A.; Vastaranta, M.; Coops, N.C.; Pitt, D.; Woods, M. The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef] [Green Version]
- Vastaranta, M.; Kankare, V.; Holopainen, M.; Yu, X.; Hyyppä, J.; Hyyppä, H. Combination of Individual Tree Detection and Area-Based Approach in Imputation of Forest Variables Using Airborne Laser Data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 73–79. [Google Scholar] [CrossRef]
- Ferraz, A.; Saatchi, S.; Mallet, C.; Meyer, V. Lidar Detection of Individual Tree Size in Tropical Forests. Remote Sens. Environ. 2016, 183, 318–333. [Google Scholar] [CrossRef]
- Goldbergs, G.; Levick, S.R.; Lawes, M.; Edwards, A. Hierarchical Integration of Individual Tree and Area-Based Approaches for Savanna Biomass Uncertainty Estimation from Airborne LiDAR. Remote Sens. Environ. 2018, 205, 141–150. [Google Scholar] [CrossRef]
- Foody, G.M.; Atkinson, P.M. (Eds.) Uncertainty in Remote Sensing and GIS; John Wiley & Sons, Ltd: Chichester, UK, 2002; ISBN 9780470035269. [Google Scholar]
- McGaughey, R.J. FUSION/LDV: Software for LiDAR Data Analysis and Visualization—V4. 20; USDA Forest Service: Washington, DC, USA, 2021. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- QGIS. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://www.qgis.org (accessed on 1 May 2022).
- Rasinmäki, J.; Melkas, T. A Method for Estimating Tree Composition and Volume Using Harvester Data. Scand. J. For. Res. 2005, 20, 85–95. [Google Scholar] [CrossRef]
- Jelének, J.; Kopačková, V.; Koucká, L.; Mišurec, J. Testing a Modified PCA-Based Sharpening Approach for Image Fusion. Remote Sens. 2016, 8, 794. [Google Scholar] [CrossRef] [Green Version]
- Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning. Remote Sens. 2012, 4, 950–974. [Google Scholar] [CrossRef] [Green Version]
- Donis, J. Zinātniskā Pamatojuma Izstrāde Informācijas Aktualizācijai Meža Valsts Reģistrā (Creation of the the Scientific Substantiation for an Information Updating in the Forest State Register); Retrieved 25 February 2019; Latvian State Forest Research Institute’ Silava’: Salaspils, Latvia, 2014. [Google Scholar]
- Cramer, J.S. Mean and Variance of R2 in Small and Moderate Samples. J. Econ. 1987, 35, 253–266. [Google Scholar] [CrossRef]
- Goldbergs, G. Impact of Base-to-Height Ratio on Canopy Height Estimation Accuracy of Hemiboreal Forest Tree Species by Using Satellite and Airborne Stereo Imagery. Remote Sens. 2021, 13, 2941. [Google Scholar] [CrossRef]
- Grinvalds, A. Improvement of Linkage between Strategic and Tactical Planning in the Final Felling. Summary of the Doctoral Thesis for the Scientific Degree Dr. Silv. Ph.D. Thesis, Latvia University of Agriculture, Jelgava, Latvia, 2016. [Google Scholar]
- Balenović, I.; Simic Milas, A.; Marjanović, H. A Comparison of Stand-Level Volume Estimates from Image-Based Canopy Height Models of Different Spatial Resolutions. Remote Sens. 2017, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Noordermeer, L.; Bollandsås, O.M.; Ørka, H.O.; Næsset, E.; Gobakken, T. Comparing the Accuracies of Forest Attributes Predicted from Airborne Laser Scanning and Digital Aerial Photogrammetry in Operational Forest Inventories. Remote Sens. Environ. 2019, 226, 26–37. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Dubayah, R.O.; Cook, B.D.; Rosette, J.; Parker, G. The Importance of Spatial Detail: Assessing the Utility of Individual Crown Information and Scaling Approaches for Lidar-Based Biomass Density Estimation. Remote Sens. Environ. 2015, 168, 102–112. [Google Scholar] [CrossRef]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Stepper, C.; Straub, C.; Pretzsch, H. Using Semi-Global Matching Point Clouds to Estimate Growing Stock at the Plot and Stand Levels: Application for a Broadleaf-Dominated Forest in Central Europe. Can. J. For. Res. 2015, 45, 111–123. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.; Cohen, W.B.; Parker, G.; Shugart, H.H. Surface Lidar Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland, USA. Remote Sens. Environ. 1999, 67, 83–98. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
Studies | (Pearse et al., 2018) [15] | (Fassnacht et al., 2017) [3] | (Immitzer et al., 2016) [16] | (Kattenborn et al., 2015) [17] | (Persson, 2016) [18] | (Straub et al., 2013) [19] | (Yu et al., 2015) [20] |
---|---|---|---|---|---|---|---|
VHRSI Sensor | Pleiades (FB) | WorldView-2 | WorldView-2 | WorldView-2 | Pléiades (FNB) | WorldView-2 | WorldView-2 |
Study location (terrain range -m) | New Zealand (200–780) | Germany (flat) | Germany (210–490) | Germany (110–140) | Sweden (125–145) | Germany (570–710) | Finland (125–185) |
Dominant Tree Species | Pinus radiata | temperate forest: Scots Pine, European beech, oaks | temperate forest: European beech, oaks, Scots Pine | temperate forest: Scots Pine, European beech, oaks | boreal forest: Scots Pine, Norway spruce, birch | temperate forest: spruce, beech | boreal forest: Scots Pine, Norway spruce |
Reference field data plots | circular (0.06 ha) plots (n = 195) | Point-Centred Quarter plot-less method (n = 80) | NFI stands (n = 92) probability-based sampling | circular (r = 35 m) plot cluster (n = 101) | circular plots (r = 10 m) (n = 326; 219) | rectangular plots 1 ha (n = 228) | rectangular plots (1024 m2) (n = 91) |
Estimated forest parameter | Stem volume (m3 ha−1) | Aboveground biomass (Mg ha−1) | Stem volume (m3 ha−1) | Aboveground Biomass (Mg ha−1) | Stem volume (m3 ha−1) | Stem volume (m3 ha−1) | Stem volume (m3 ha−1) |
VHRSI R2 | 0.7 | 0.64 | 0.53 | 0.57 | 0.72; 0.70 | 0.615 | 0.92 |
VHRSI RMSE (% of mean) | 22.2 | 20.0 | 31.7 | 18.3 | 27.9; 30.3 | 44.4 | 15.9 |
ALS R2 | 0.72 | n/a | n/a | n/a | 0.84; 0.76 | 0.708 | 0.92 |
ALS RMSE (% of mean) | 21.1 | 21 | n/a | n/a | 21.1; 27.5 | 38.02 | 15.91 |
Tree Species | No. Stands | Stands Area (ha) | Age (Years) | Canopy Height (m) | Growing Stock | Basal Area (m2 ha−1) | ||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Mean | Mean | Mean | Mean | ||
Pine (Pinus sylvestris) | 687 | 0.14 | 25.6 | 1.8 | 88 | 23 | 273 | 24 |
Spruce (Pícea ábies) | 291 | 0.13 | 8.1 | 1.3 | 55 | 21 | 240 | 24 |
Birch (Betula pendula) | 145 | 0.08 | 11.7 | 1.5 | 49 | 20 | 197 | 18 |
European black alder (Álnus glutinósa) | 128 | 0.18 | 9.4 | 1.6 | 66 | 23 | 270 | 23 |
Sensor | Image ID/Overlap | Acquisition Date/Time | Delivered Bands | Product GSD (m) | Elevation Angle | Convergence Angle | Base/Height Ratio | Sun Elevation/Azimuth |
---|---|---|---|---|---|---|---|---|
GE01 | 10500500ACDD9F00, 10500500ACDD9E00 | 7 August 2020 12:27 PM | PAN, R,G,B,NIR | 0.5 2 | 64 73.8 | 14.7 | 0.28 | 48.5/159 |
UltraCam | 80% along-track 40% across-track | 13 July 2020 9:30 AM | R,G,B,NIR | 0.25 | - | 6.2 | 0.11 | 35/105 |
Stem Volume | ||||
---|---|---|---|---|
No. Obs | R2 | RMSE (m3) | RMSE % | |
Pine | 47084 | 0.82 | 0.25 | 30% |
Spruce | 42588 | 0.89 | 0.13 | 31% |
Birch | 33059 | 0.77 | 0.21 | 35% |
Black alder | 22983 | 0.80 | 0.16 | 33% |
No. Stands | R2 | RMSE (m3 ha−1) | RMSE % of Mean | ME (m3 ha−1) | ME % of Mean | |
---|---|---|---|---|---|---|
Pine | 687 | 0.79 | 68 | 25% | 25 | 9% |
Spruce | 291 | 0.74 | 73 | 30% | −24 | −10% |
Birch | 145 | 0.84 | 55 | 28% | 3.6 | 2% |
Black alder | 128 | 0.71 | 91 | 34% | 3.2 | 1% |
Height Metrics Models | Independent Variable | R2 | RMSE (m3 ha−1) | RMSE % |
---|---|---|---|---|
Scots pine −0.25 ha 1087 plots | s | |||
ALS cloud metrics–0.5 m cut-off | p50 (p60) | 0.93 | 47.4 | 16.9% |
ALS cloud metrics–no cut | QMCH (p80) | 0.92 | 50.8 | 18.1% |
ALS-based GRID 0.75 m | p60 (Mean) | 0.95 | 44.0 | 15.7% |
GeoEye-1 GRID 0.5 m | Mean (p50) | 0.95 | 44.3 | 15.8% |
UltraCam GRID 0.25 m | Mean (p50) | 0.96 | 38.2 | 13.6% |
Scots pine −1 ha 217 plots | ||||
ALS cloud metrics–0.5 m cut-off | p50 (p60) | 0.95 | 38.4 | 13.7% |
ALS cloud metrics–no cut | QMCH (p80) | 0.94 | 39.8 | 14.2% |
ALS-based GRID 0.75 m | Mean (p60) | 0.96 | 33.9 | 12.1% |
GeoEye-1 GRID 0.5 m | Mean (p50) | 0.97 | 33.2 | 11.9% |
UltraCam GRID 0.25 m | Mean (p50) | 0.97 | 28.8 | 10.3% |
Norway spruce −0.25 ha 379 plots | ||||
ALS cloud metrics–0.5 m cut-off | Mean (QMCH) | 0.91 | 30.7 | 15.3% |
ALS cloud metrics–no cut | p75 (p70) | 0.92 | 27.2 | 13.6% |
ALS-based GRID 0.75 m | p60 (p50) | 0.94 | 24.4 | 12.2% |
GeoEye-1 GRID 0.5 m | Mean (p50) | 0.91 | 32.8 | 16.4% |
UltraCam GRID 0.25 m | Mean (p50) | 0.90 | 34.2 | 17.1% |
Birch −0.25 ha 223 plots | ||||
ALS cloud metrics–0.5 m cut-off | Mean (QMCH) | 0.89 | 33.3 | 17.5% |
ALS cloud metrics–no cut | QMCH (p75) | 0.90 | 32.4 | 17.1% |
ALS-based GRID 0.75 m | Mean (p50) | 0.93 | 26.9 | 14.2% |
GeoEye-1 GRID 0.5 m | Mean (p50) | 0.89 | 34.0 | 17.9% |
UltraCam GRID 0.25 m | Mean (p40) | 0.88 | 35.8 | 18.8% |
Black Alder −0.25 ha 338 plots | ||||
ALS cloud metrics–0.5 m cut-off | p60 (p70) | 0.90 | 53.8 | 19.2% |
ALS cloud metrics–no cut | p80 (p90) | 0.90 | 54.5 | 19.5% |
ALS-based GRID 0.75 m | p75 (p80) | 0.91 | 52.8 | 18.9% |
GeoEye-1 GRID 0.5 m | Mean (p50) | 0.94 | 44.4 | 15.9% |
UltraCam GRID 0.25 m | Mean (p50) | 0.93 | 46.4 | 16.6% |
Height Metrics Models | Independent Variable | R2 | RMSE (m3 ha−1) | RMSE % |
---|---|---|---|---|
Scots pine—stands (687) | ||||
ALS cloud metrics—0.5 m cut-off | p60 (p50) | 0.86 | 52.2 | 18.6% |
ALS cloud metrics—no cut-off | p70 (QMCH) | 0.89 | 46.8 | 16.7% |
ALS-based GRID 0.75 m | p60 (p70) | 0.90 | 44.8 | 16.0% |
GeoEye-1 GRID 0.5 m (677 stands) | p50 (p60) | 0.89 | 46.3 | 16.6% |
incl.: Scots pine—stands > 1 ha (400) | ||||
ALS cloud metrics—no cut-off | QMCH (p75) | 0.90 | 46.4 | 16.6% |
ALS-based GRID 0.75 m | p60 (p70) | 0.92 | 42.3 | 15.1% |
GeoEye-1 GRID 0.5 m (400 stands) | p50 (p60) | 0.91 | 45.1 | 16.1% |
incl.: Scots pine—stands < 1 ha (287) | ||||
ALS cloud metrics—no cut-off | p70 (p75) | 0.87 | 51.6 | 18.4% |
ALS-based GRID 0.75 m | p60 (p70) | 0.87 | 50.8 | 18.1% |
GeoEye-1 GRID 0.5 m (277 stands) | p50 (p60) | 0.86 | 56.5 | 20.2% |
Norway spruce—stands (291) | ||||
ALS cloud metrics—0.5 m cut-off | p50 (p60) | 0.92 | 33.7 | 16.9% |
ALS cloud metrics—no cut-off | p80 (p75) | 0.93 | 31.4 | 15.7% |
ALS-based GRID 0.75 m | p70 (p60) | 0.94 | 29.2 | 14.6% |
GeoEye-1 GRID 0.5 m (288 stands) | p60 (p50) | 0.92 | 32.7 | 16.4% |
Birch—stands (145) | ||||
ALS cloud metrics—0.5 m cut-off | Mean (p60) | 0.92 | 33.9 | 17.8% |
ALS cloud metrics—no cut-off | QMCH (p80) | 0.94 | 28.4 | 14.9% |
ALS-based GRID 0.75 m | p70 (p75) | 0.94 | 29.0 | 15.3% |
GeoEye-1 GRID 0.5 m (143 stands) | p50 (p60) | 0.92 | 33.7 | 17.7% |
Black Alder—stands (128) | ||||
ALS cloud metrics—0.5 m cut-off | p60 (p70) | 0.88 | 52.3 | 19.4% |
ALS cloud metrics—no cut-off | p80 (p75) | 0.90 | 48.8 | 18.1% |
ALS-based GRID 0.75 m | p70 (p75) | 0.92 | 46.5 | 17.2% |
GeoEye-1 GRID 0.5 m (127 stands) | p50 (p60) | 0.87 | 54.6 | 19.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldbergs, G. Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests. Remote Sens. 2023, 15, 1688. https://doi.org/10.3390/rs15061688
Goldbergs G. Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests. Remote Sensing. 2023; 15(6):1688. https://doi.org/10.3390/rs15061688
Chicago/Turabian StyleGoldbergs, Grigorijs. 2023. "Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests" Remote Sensing 15, no. 6: 1688. https://doi.org/10.3390/rs15061688
APA StyleGoldbergs, G. (2023). Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests. Remote Sensing, 15(6), 1688. https://doi.org/10.3390/rs15061688