Study on the Identification of Habitat Suitability Areas for the Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.1.1. Study Area
2.1.2. Grassland Locust Dataset
2.1.3. Environmental and Climatic Data
2.2. Research Methods
2.2.1. Species Distribution Model
2.2.2. Maxent Model
2.2.3. Research Process
2.2.4. Data Preprocessing
- (1)
- We imported the downloaded environmental variable data and input the data into the ArcGIS software using a unified geographic coordinate system (WGS84);
- (2)
- Then, we resampled the data at the same resolution as the bio1 data;
- (3)
- The data were then cut according to the study area;
- (4)
- We set the cropped no-data value to −9999;
- (5)
- Finally, we unified the ranks and numbers of all environmental factors and exported them into ASCII format.
3. Results
3.1. Filtering the Bioclimatic Variables
3.2. Model Training
3.3. Maxent Model Verification
3.4. Model Evaluation
3.5. Distribution and Identification of Habitat-Suitability Areas for the Dominant Species Dasyhippus Barbipes in Inner Mongolia
4. Discussion
4.1. Response Analysis of the Main Habitat Factors
4.1.1. Response Analysis of the Main Habitat Factors for Locusts in High-Density Grassland Areas
4.1.2. Response Analysis of the Main Habitat Factors for Dasyhippus Barbipes at All Survey Sites
4.1.3. Response Analysis of the Main Habitat Factors for Locusts under Different Density Levels
4.1.4. Knife-Cutting Method
4.2. Difference in Habitat-Suitability Areas for Grassland Locusts under Different Sample Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, G.; Zhao, H.; Tu, X.; Zhang, Z. Study on the division of suitable habitats of Asiatic Locust in Inner Mongolia Grassland. Plant Prot. Res. Rep. 2018, 44, 24–31. [Google Scholar]
- Li, G.; Kong, D.; Li, F. Review and prospect of historical locust evolution and water system changes in China. Trop. Geogr. 2017, 37, 226–237. [Google Scholar]
- He, K. Habitat Suitability Assessment of Grasshoppers in Inner Mongolia Grassland Based on Multi-Source Remote Sensing Satellite Data. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Zhu, M.; Huang, W.; Zhang, R.; Wei, S.; Luo, X.; Yang, Y. Habitat and distribution of grasshopper in Ningxia grassland. J. Plant Prot. 2021, 48, 237–238. [Google Scholar]
- Huang, W.; Zhang, J.; Luo, J.; Zhao, J.; Huang, L.; Zhou, X. Monitoring and Forecasting of Crop Diseases and Pests by Remote Sensing; Science Press: Beijing, China, 2015. [Google Scholar]
- Liu, L.; Hong, A. Analysis on meteorological and ecological conditions of locust outbreak in Inner Mongolia Grassland in 2004. Atmosphere 2004, 30, 55–57. [Google Scholar]
- Li, H.C.; Chen, Y.L. Feeding Habits of Grasshoppers in Typical Steppe of Inner Mongolia, II, Feeding Characteristics in Natural Plant Communities//Study on Grassland Ecosystem, First Episode; Science Press: Beijing, China, 1985; pp. 156–165. [Google Scholar]
- Hiekema, J.U.; Roffcy, C.J. Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. Int. J. Remote Sens. 1986, 7, 1609–1622. [Google Scholar] [CrossRef]
- Voss, F.; Dreiser, U. Mapping of Desert Locust Habitats using Remote Sensing Techniquest. In New Strategies in Locust Control; Birkhauser: Basel, Switzerland, 1997; pp. 37–45. [Google Scholar]
- Gómez, D.; Salvadorect, P. Desert locust detection using Earth observation satellite data in Mauritania. J. Arid. Environ. 2019, 164, 29–37. [Google Scholar] [CrossRef]
- Scott, C.A.; Bastiaanssen, W.G.; Ahmad, M.U. Mapping Root Zone Soil Moisture Using Remotely Sensed Optical Imagery. J. Irrig. Drain. Eng. 2003, 129, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Ye, S. Using an image segmentation and support vector machine method for identifying two locust species and instars. J. Integr. Agric. 2020, 19, 1301–1313. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Rodrigo, J.F.; Gil, J.; Casanova, J.L. Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR_SMNRT2) Near Real Time product. J. Arid. Environ. 2021, 194, 104599. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P. Modelling desert locust presences using 32-year soil moisture data on a Large scale. Ecol. Indic. 2020, 117, 106655. [Google Scholar] [CrossRef]
- Taalas, P.; da Silva, J.G. Weather and Desert Locusts; WMO-No.1175; World Meteorological Organization and Food and Agriculture Organization of the United Nations, FAO Desert Locust Information Service: Rome, Italy, 2016. [Google Scholar]
- Mamo, D.K.; Bedane, D.S. Modelling the effect of desert locust infestation on crop production with intervention measures. Heliyon 2021, 7, e07685. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Lu, S.; Gu, J.; Zhang, L.; Yang, J.; Fan, C.; Li, L. A locust remote sensing monitoring system based on dynamic model library. Comput. Electron. Agric. 2021, 186, 106218. [Google Scholar] [CrossRef]
- Scanlan, J.C.; Grant, W.E.; Hunter, D.M.; Milner, R. Habitat and environmental factors influencing the control of migratory locusts (Locusta migratoria) with an entomopathogenic fungus (Metarhizium anisopliae). Ecol. Model. 2001, 136, 223–236. [Google Scholar] [CrossRef]
- Wang, J.; Du, B.; Gao, S.; Meng, G.; Wang, N.; Lin, K. Research progress in monitoring and warning technology of grasshopper in grassland. J. Plant Prot. 2021, 48, 65–72. [Google Scholar]
- Xu, C.; Wang, J. Research progress of integrated locust control technology. J. Plant Prot. 2021, 48, 73–83. [Google Scholar]
- Tu, X.; Du, G.; Zhang, Z. Integration and application of green locust control technology system in China. J. Plant Prot. 2021, 48, 1–4. [Google Scholar]
- Han, X.; Ma, J.; Luo, J.; Zhang, Y.; Tang, J. Application of remote sensing and GIS in the study of migratory locusts in East Asia. Geogr. Res. 2003, 22, 253–261. [Google Scholar]
- Chen, J.; Wang, X. Application of remote sensing and GIS in locust habitat research. J. Ecol. Environ. 2012, 21, 970–976. [Google Scholar]
- Chu, X. Tree Species Classification Based on Leaf Non-Imaging Hyperspectral Data. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2012. [Google Scholar]
- Zhang, J.; Yuan, L.; Wang, J.; Luo, J.; Du, S.; Huang, W. Research progress in remote sensing monitoring of crop diseases and insect pests. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–10. [Google Scholar]
- Jin, R.; Sun, K.; He, H.; Zhou, Y. Research progress of habitat suitability index model. J. Ecol. 2008, 27, 841–846. [Google Scholar]
- Zhao, L.; Huang, W.; Chen, J.; Dong, Y.; Ren, B.; Geng, Y. Land use/cover changes in the Oriental migratory locust area of China: Implications for ecological control and monitoring of locust area. Agric. Ecosyst. Environ. 2020, 303, 107110. [Google Scholar] [CrossRef]
- Zhao, L. Remote sensing monitoring of temporal and spatial dynamics of locust locust regions in China and its relationship with land use/cover change. Res. Rep. 2019, 1, 1–107. [Google Scholar]
- Sun, Z. Study on Extraction of Suitable Habitat Areas of Grassland Locust and Remote Sensing Prediction Method of Occurrence Risk. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Geng, Y.; Zhao, L.; Dong, Y.; Huang, W.; Shi, Y.; Ren, Y.; Ren, B. Migratory Locust Habitat Analysis With PB-AHP Model Using TimeSeries Satellite Images. IEEE Access 2020, 8, 166813–166823. [Google Scholar] [CrossRef]
- Saha, A.; Rahman, S.; Alam, S. Modeling current and future potential distributions of desert locust Schistocerca gregaria (Forskål) under climate change scenarios using MaxEnt. J. Asia-Pacifific Biodivers. 2020, 14, 399–409. [Google Scholar] [CrossRef]
- Wang, B.; Deveson, E.D.; Waters, C.; Spessa, A.; Lawton, D.; Feng, P.; Liu, D.L. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 2019, 668, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.L.; Fang, J.Y.; He, J.S.; Xiao, Y. Grassland vegetation biomass and its spatial distribution pattern in China. J. Plant Ecol. 2004, 28, 491–498. [Google Scholar]
- Huang, Y.R.; Dong, Y.Y.; Huang, W.J.; Ren, B.; Deng, Q.; Shi, Y.; Bai, J.; Ren, Y.; Geng, Y.; Ma, H. Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects 2020, 11, 805. [Google Scholar] [CrossRef]
- Yin, X.; Xia, K. Zoology of China. Class Insecta, Orthoptera, Locust Idea: Malleophoridae, Sacroceridae; Science Press: Beijing, China, 2003; Volume 32, pp. 1–340. [Google Scholar]
- Liao, J.; Yi, Z.; Li, S.; Xiao, L. Study on the potential distribution of Radix anthomiae in different periods based on Maxent model. Acta Ecol. Sin. 2020, 40, 8297–8305. [Google Scholar]
Variable and Description | Unit |
---|---|
bio1, Mean Annual Temperature | °C |
bio2, Mean Diurnal Range (i.e., mean of monthly (max. temp.–min. temp.)) | °C |
bio3, Mean Annual Temperature Range (i.e., bio2/bio7 × 100) | % |
bio4, Temperature Seasonality | °C |
bio5, Max. Temperature of Warmest Month | °C |
bio6, Min Temperature of Coldest Month | °C |
bio7, Annual Temperature Range (i.e., bio5–bio6) | °C |
bio8, Mean Temperature of Wettest Quarter | °C |
bio9, Mean Temperature of Driest Quarter | °C |
bio10, Mean Temperature of Warmest Quarter | °C |
bio11, Mean Temperature of Coldest Quarter | °C |
bio12, Annual Precipitation | mm |
bio13, Precipitation Level in Wettest Month | mm |
bio14, Precipitation Level in Driest Month | mm |
bio15, Precipitation Seasonality (i.e., coefficient of variation) | % |
bio16, Precipitation Level in Wettest Quarter | mm |
bio17, Precipitation Level in Driest Quarter | mm |
bio18, Precipitation Level in Warmest Quarter | mm |
bio19, Precipitation Level Coldest Quarter | mm |
soil, Soil Type | categorization |
soilph, Soil Acidity | PH |
soilsal, Soil Salinity | dS/m |
grassland, Grassland Type | categorization |
veg, Vegetation Type | categorization |
vfc, Vegetation Coverage | % |
abovebio, Aboveground Plant Coverage | kg/m2 |
dem, Digital Elevation Model | m |
Slope | ° |
Aspect | ° |
spre, Mean Monthly Precipitation in Growth Period | mm |
slst, Mean Monthly Temperature in Growth Period | °C |
sndvi, Mean Monthly Vegetation Index in Growth Period | % |
gpre, Mean Monthly Precipitation in Growth Period | mm |
glst, Mean Monthly Temperature in Growth Period | °C |
gndvi, Mean Monthly Vegetation Index in Growth Period | % |
ipre, Mean Monthly Precipitation in Incubation Period | mm |
ilst, Mean Monthly Temperature in Incubation Period | °C |
indvi, Mean Monthly Vegetation Index in Incubation Period | % |
opre, Mean Monthly Precipitation in Winter | mm |
olst, Mean Monthly Temperature in Winter | °C |
ondvi, Mean Monthly Vegetation Index in Winter | % |
Low Density | Medium-to-Low Density | Medium-to-High Density | High Density | All Points |
---|---|---|---|---|
aspect | abovebio | aspect | aspect | aspect |
glst | aspect | dem | dem | dem |
gpre | dem | glst | glst | glst |
grassland | glst | gpre | gndvi | gpre |
ipre | gpre | grassland | gpre | grassland |
ondvi | grassland | ilst | grassland | ipre |
opre | ilst | ipre | ipre | opre |
slope | indvi | opre | olst | slope |
sndvi | ipre | slope | opre | slst |
soil | ondvi | soil | slope | soil |
soilph | opre | soilph | slst | soilph |
soilsal | slope | soilsal | soil | soilsal |
spre | slst | spre | soilph | spre |
veg | sndvi | veg | soilsal | veg |
vfc | soil | vfc | spre | vfc |
bio1 | soilph | bio1 | veg | bio1 |
bio2 | soilsal | bio2 | vfc | bio2 |
bio10 | spre | bio3 | bio1 | bio3 |
bio13 | veg | bio8 | bio10 | bio10 |
bio15 | vfc | bio12 | bio12 | bio13 |
bio17 | bio1 | bio14 | bio15 | bio14 |
bio19 | bio2 | bio15 | bio19 | bio15 |
bio8 | bio3 | bio19 | ||
bio13 | ||||
bio14 | ||||
bio15 | ||||
bio19 |
AUC Value | Model Results |
---|---|
<0.5 | Failed to describe reality |
0.5 | Random distribution |
0.5–0.6 | Failed |
0.6–0.7 | Poor |
0.7–0.8 | Common |
0.8–0.9 | Good |
>0.9 | Excellent |
Density | Variable | Percentage Contribution | Permutation Importance | Density | Variable | Percentage Contribution | Permutation Importance |
---|---|---|---|---|---|---|---|
Low | bio_13 | 16.5 | 19.6 | Medium–Low | bio_1 | 21.6 | 28 |
bio_1 | 14.2 | 0.9 | soil | 15.5 | 0.7 | ||
vfc | 12.4 | 2.5 | bio_13 | 11.9 | 3.1 | ||
bio_4 | 11.5 | 0.3 | vfc | 10.3 | 2.7 | ||
soil | 5 | 0.9 | spre | 8.2 | 4.5 | ||
ipre | 4.9 | 4.8 | veg | 5.4 | 4.5 | ||
Medium–High | soil | 26.9 | 4.3 | High | bio_1 | 24.9 | 4.8 |
bio_1 | 20.5 | 10.8 | soil | 20.1 | 2.5 | ||
vfc | 11.8 | 6.1 | vfc | 11.8 | 0.8 | ||
grassland | 7.6 | 0.5 | grassland | 7.2 | 0.3 | ||
dem | 6 | 20.9 | veg | 6.9 | 2.8 | ||
veg | 5.7 | 4.9 | gpre | 5.5 | 9.8 | ||
All Points | bio_13 | 23.3 | 17.1 | ||||
bio_1 | 21.5 | 9.1 | |||||
vfc | 13 | 5.2 | |||||
soil | 11.1 | 2.2 | |||||
spre | 6.1 | 7.9 | |||||
veg | 5.8 | 4.1 |
Sample Point Type | Degree of Fitness | Habitat-Suitability Area (km2) |
---|---|---|
All points | Low | 301,810 |
Medium–Low | 229,331 | |
Medium–High | 180,940 | |
High | 12,647 | |
Greater than 15 locusts/m2 | Low | 217,976 |
Medium–Low | 173,141 | |
Medium–High | 46,283 | |
High | 7318 | |
Different density classes | Low | 57,344 |
Medium–Low | 55,855 | |
Medium–High | 32,242 | |
High | 23,934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, W.; Ye, H.; Lu, L. Study on the Identification of Habitat Suitability Areas for the Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia. Remote Sens. 2023, 15, 1718. https://doi.org/10.3390/rs15061718
Zhang X, Huang W, Ye H, Lu L. Study on the Identification of Habitat Suitability Areas for the Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia. Remote Sensing. 2023; 15(6):1718. https://doi.org/10.3390/rs15061718
Chicago/Turabian StyleZhang, Xianwei, Wenjiang Huang, Huichun Ye, and Longhui Lu. 2023. "Study on the Identification of Habitat Suitability Areas for the Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia" Remote Sensing 15, no. 6: 1718. https://doi.org/10.3390/rs15061718
APA StyleZhang, X., Huang, W., Ye, H., & Lu, L. (2023). Study on the Identification of Habitat Suitability Areas for the Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia. Remote Sensing, 15(6), 1718. https://doi.org/10.3390/rs15061718