A New Method for Hour-by-Hour Bias Adjustment of Satellite Precipitation Estimates over Mainland China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Study Data
2.2.1. Ground Reference
2.2.2. Fengyun 4A
3. Methodology
3.1. Data Pre-Processing
3.2. Bias-Adjusting Procedure
- (1)
- Self-adaptive selection of sample data
- Determining the temporal window
- Determining the spatial window
- (2)
- Constructing the error-correction model
- (3)
- Revising in real time
- (4)
- Sequence-oriented processing method
3.3. Statistical Indices in Evaluation
4. Results
4.1. Comparison of Hourly Average Precipitation for Different Products
4.2. Spatio-Temporal Performance Comparison of REGC and SISP-RT
4.3. Performance of REGC and SISP-RT under Different Precipitation Intensities
4.4. Error Component Analysis
5. Discussions
5.1. Different Training Data Lengths for the SISP Approach and the Threshold Selection
5.2. Strengths and Limitations of the Method
5.3. Application Prospects
6. Conclusions
- (1)
- In the analysis of the hourly average precipitation of precipitation products, the hourly average precipitation of REGC is higher than that of CMPA in most areas of mainland China, while the quantitative values of SISP-RT are more similar to those of CMPA, indicating the advantage of the SISP method in correcting rainfall. In the time-series plot of the hourly mean bias, it is found that the SISP method corrects the biases significantly better in the middle and later stages of the time series than in the initial stage, which may be related to the addition of the corrected satellite precipitation data to the training sample to improve the accuracy of the correction parameters.
- (2)
- In the spatial analysis, the SISP algorithm can effectively reduce the error of the original REGC in mainland China and mainly fix the biases of the original REGC in the central regions of the humid and semi-humid regions. Compared with REGC, the RB of SISP-RT is reduced by 52% in the humid region, but further improvement is needed in reducing the bias in the arid and semi-arid regions. In the temporal analysis, the RB and RMSE of REGC show a clear pattern of monthly variation, and the variation of RB and RMSE curves of SISP-RT is obviously decreased after correction.
- (3)
- In terms of precipitation intensity, the original REGC exhibits overestimation for low rain intensity (0.2–1 mm/h) and underestimation for high rain intensity (>1 mm/h). The SISP algorithm remarkably improves the overestimation of low rain intensity from the original data but tends to overcorrect for rainfall rates above 1 mm/h leading to more severe underestimation.
- (4)
- The contribution and problems of the SISP algorithm in correcting each error component were further clarified by error decomposition. The SISP algorithm can effectively reduce hit biases in the real-time corrected data and has a better effect on the higher positive hit biases (from more than 80% to about 20%). However, limited by the fact that the precipitation in some regions is outside the effective correction range of miss biases and false biases, the algorithm basically cannot improve the miss bias and the false bias of the original satellite precipitation products.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Kidd, C.; Bauer, P.; Turk, J.; Huffman, G.; Joyce, R.; Hsu, K.; Braithwaite, D. Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeorol. 2012, 13, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Veerakachen, W.; Raksapatcharawong, M. Rainfall estimation for real time flood monitoring using geostationary meteorolog-ical satellite data. Adv. Space Res. 2015, 56, 1139–1145. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701. [Google Scholar] [CrossRef]
- Boushaki, F.I.; Hsu, K.; Sorooshian, S.; Park, G.; Mahani, S.; Shi, W. Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern united states. J. Hydrometeorol. 2009, 10, 1231–1242. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Adler, R.F.; Tian, Y.; Hong, Y.; Pierce, H.F. Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens. 2010, 31, 3763–3782. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Yang, D.; Bin Farhan, S. Precipitation bias variability versus various gauges under different climatic condi-tions over the Third Pole Environment (TPE) region. Int. J. Climatol. 2015, 35, 1201–1211. [Google Scholar] [CrossRef]
- Tang, G.; Behrangi, A.; Long, D.; Li, C.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2018, 559, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Yong, B.; Hong, Y.; Ren, L.-L.; Gourley, J.J.; Huffman, G.J.; Chen, X.; Wang, W.; Khan, S.I. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res. Atmos. 2012, 117, D9. [Google Scholar] [CrossRef] [Green Version]
- Behrangi, A.; Hsu, K.; Imam, B.; Sorooshian, S.; Huffman, G.J.; Kuligowski, R.J. PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeorol. 2009, 10, 1414–1429. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Jianyun, Z. Review and reflection on China’s hydrological forecasting techniques. Adv. Water Sci. 2010, 21, 435–443. [Google Scholar] [CrossRef]
- Hanqing, C.; Bin, Y.; Emmanuel, K.P.; Leyang, W.; Yang, H. Global component analysis of errors in three satellite-only global precipitation estimates. Hydrol. Earth Syst. Sci. 2021, 25, 3087–3104. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based es-timates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Q. Combining satellite precipitation and long-term ground observations for hydrological monitoring in China. J. Geophys. Res.-Atmos. 2015, 120, 6426–6443. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Tang, G.; Wang, X.; Liu, Y.; Jia, L.; Xie, G.; Li, S.; Zhang, Y. Correcting GPM IMERG precipitation data over the Tianshan Mountains in China. J. Hydrol. 2019, 575, 1239–1252. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, B.; Xing, W.; Zhou, J.; Xu, F.; Xu, Y. Comprehensive evaluation of latest GPM era IMERG and GSMaP precipita-tion products over mainland China. Atmos. Res. 2020, 246, 105132. [Google Scholar] [CrossRef]
- Lu, D.; Yong, B. Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sens. 2018, 10, 2022. [Google Scholar] [CrossRef] [Green Version]
- Moazami, S.; Na, W.; Najafi, M.R.; de Souza, C. Spatiotemporal bias adjustment of IMERG satellite precipitation data across Canada. Adv. Water Resour. 2022, 168, 104300. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, J.; Zhu, S.; Yang, J.; Tang, G.; Yang, Y.; Shi, Z.; Hong, Y. AIMERG: A new Asian precipitation dataset (0.1 de-grees/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst. Sci. Data 2020, 12, 1525–1544. [Google Scholar] [CrossRef]
- Yang, F.; Wang, W.; Lu, H.; Yang, K.; Tian, F. Improving GPM precipitation data over yarlung zangbo river basin using smap soil moisture retrievals. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3047–3050. [Google Scholar]
- Nie, S.; Wu, T.; Luo, Y.; Deng, X.; Shi, X.; Wang, Z.; Liu, X.; Huang, J. A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions. Adv. Atmos. Sci. 2016, 33, 889–904. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B. Real-Time bias reduction for satellite-based precipitation estimates. J. Hydromete-orol. 2010, 11, 1275–1285. [Google Scholar] [CrossRef]
- Deng, P.; Zhang, M.; Guo, H.; Xu, C.; Bing, J.; Jia, J. Error analysis and correction of the daily GSMaP products over Hanjiang River Basin of China. Atmos. Res. 2018, 214, 121–134. [Google Scholar] [CrossRef]
- Choubin, B.; Khalighi-Sigaroodi, S.; Mishra, A.; Goodarzi, M.; Shamshirband, S.; Ghaljaee, E.; Zhang, F. A novel bias correction framework of TMPA 3B42 daily precipitation data using similarity matrix/homogeneous conditions. Sci. Total Environ. 2019, 694, 133680. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Y.; Li, X.; Wang, T.; Wang, Y.; Qiu, Q.; Deng, Z. Evaluation and correction of GPM IMERG precipitation products over the capital circle in northeast China at multiple spatiotemporal scales. Adv. Meteorol. 2018, 2018, 4714173. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Verbist, K.M.J. Bias adjustment of satellite-based precipitation estima-tion using gauge observations: A case study in Chile. J. Geophys. Res. Atmosp. 2016, 121, 3790–3806. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Yong, B.; Gourley, J.J.; Qi, W. Real-time bias adjustment for satellite-based precipitation estimates over Mainland China. J. Hydrol. 2021, 596, 126133. [Google Scholar] [CrossRef]
- Chen, H.; Yong, B.; Gourley, J.J.; Wen, D.; Qi, W.; Yang, K. A novel real-time error adjustment method with considering four factors for correcting hourly multi-satellite precipitation estimates. IEEE Trans. Geosci. Remote 2022, 60, 4105211. [Google Scholar] [CrossRef]
- Yin, J.B.; Guo, S.L.; Gu, L. Thermodynamic response of precipitation extremes to climate change and its impacts on floods over China. Chin. Sci. Bull. 2021, 66, 4315–4325. [Google Scholar] [CrossRef]
- Degefu, M.A.; Bewket, W. Variability and trends in rainfall amount and extreme event indices in the Omo-Ghibe River Basin, Ethiopia. Reg. Environ. Chang. 2014, 14, 799–810. [Google Scholar] [CrossRef]
- Niu, N.; Jiang, X.; Zhang, X. Application of FY-4 satellite products in the analysis of a rainstorm weather process. Satell. Appl. 2022, 3, 42–48. [Google Scholar]
- Xian, D.; Ren, S.; Shao, J. Application of Fengyun Meteorological Satellite in Flood Season Disaster Pevention and Mitigation. Satell. Appl. 2020, 34, 13–18. [Google Scholar] [CrossRef]
- Lu, H.; Huang, Z.; Ding, L.; Lu, T.; Yuan, Y. Calibrating FY4A QPE using CMPA over Yunnan-Kweichow Plateau in summer 2019. Eur. J. Remote Sens. 2021, 54, 476–486. [Google Scholar] [CrossRef]
- Ren, J.; Xu, G.R.; Zhang, W.G.; Leng, L.; Xiao, Y.J.; Wan, R.; Wang, J.C. Evaluation and improvement of FY-4A AGRI quantita-tive precipitation estimation for summer precipitation over complex topography of western China. Remote Sens. 2021, 13, 4366. [Google Scholar] [CrossRef]
- Yin, T.; Yin, S.; Li, F. Relationship between the summer extreme precipitation in the south and north of the qinling Mountains and the western pacific subtropical high. Arid. Zone Res. 2019, 36, 1379–1390. [Google Scholar] [CrossRef]
- Zhang, C. Changes in the characteristics of subtropical high pressure in the western Pacific Ocean during summer and its im-pact on summer precipitation in China over the past 60 years. In Proceedings of the Innovation-Driven Development Improving Meteorological Disaster Defense Capability-The 30th Annual Meeting of the Chinese Meteorological Society, Nanjing, China, 9 March 2013; pp. 310–322. [Google Scholar]
- Yong, B.; Chen, B.; Tian, Y.; Yu, Z.; Hong, Y. Error-component analysis of TRMM-Based multi-satellite precipitation estimates over Mainland China. Remote Sens. 2016, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res.-Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Yu, J. Analysis of The combined gauge-satellite hourly precipitation over China based on the OI technique. Acta Meteorol. Sin. 2012, 70, 1381–1389. [Google Scholar] [CrossRef]
- Yu, J.; Shen, Y.; Pan, Y. Improvement of satellite-based precipitation estimates over china based 0n probability density func-tion matching method. J. Appl. Meteorol. Sci. 2013, 24, 544–553. [Google Scholar]
- Shen, Y.; Pan, Y.; Yu, J. Quality assessment of hourly merged precipitation product over China. Trans. Atmos. Sci. 2013, 36, 37–46. [Google Scholar] [CrossRef]
- Yu, J.; Shen, Y.; Pan, Y. Comparative assessment between the daily merged precipitation dataset over China and The Worlds Popular Counterparts. Acta Meteorol. Sin. 2015, 73, 394–410. [Google Scholar]
- National Satellite Meteorological Center. FengYun 4A. Available online: https://fy4.nsmc.org.cn/nsmc/cn/satellite/FY4A.html. (accessed on 23 December 2022).
- Zhong, Y. Evaluation and verification of FY-4A satellite quantitative precipitation estimation product. J. Agric. Catastroph. 2021, 11, 96–98. [Google Scholar]
- Nie, S.; Luo, Y.; Zhu, J. Trends and scales of observed soil moisture variations in China. Adv. Atmos. Sci. 2008, 25, 43–58. [Google Scholar] [CrossRef]
- Chen, H.; Yong, B.; Shen, Y.; Liu, J.; Hong, Y.; Zhang, J. Comparison analysis of six purely satellite-derived global precipitation estimates. J. Hydrol. 2020, 581, 124376. [Google Scholar] [CrossRef]
- Lu, C.; Ye, J.; Fang, G.; Huang, X.; Yan, M. Assessment of GPM IMERG Satellite Precipitation Estimation under Complex Cli-matic and Topographic Conditions. Atmosphere 2021, 12, 780. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, B.; Ma, Z.; Chen, X.; Qiu, J.; Liu, D. Comprehensive comparisons of state-of-the-art gridded precipitation es-timates for hydrological applications over southern China. Remote Sens. 2020, 12, 3997. [Google Scholar] [CrossRef]
- Zhang, F.; Chai, Y.; Chai, H.; Ding, L. lmproving the ll-posed problems of the least squares attitude estimation with GNSS multi-antennas using. J. Navig. Position. 2015, 3, 85–88. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.L.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satel-lite-based precipitation estimates. J. Geophys. Res. Atmos. 2009, 114, D24. [Google Scholar] [CrossRef] [Green Version]
- Skoien, J.O.; Bloschl, G.; Western, A.W. Characteristic space scales and timescales in hydrology. Water. Resour. Res. 2003, 39, 10. [Google Scholar] [CrossRef]
- Wu, H.; Yong, B.; Shen, Z.; Qi, W. Comprehensive error analysis of satellite precipitation estimates based on Fengyun-2 and GPM over Mainland China. Atmos. Res. 2021, 263, 105805. [Google Scholar] [CrossRef]
Statistic Indices | Equation | Suitable Value |
---|---|---|
CC | 1 | |
RMSE | 0 | |
RB | 0 | |
Hit bias | 0 | |
Miss bias | 0 | |
False bias | 0 |
Study Area | RMSE (mm/h) | RB (%) | CC | |||
---|---|---|---|---|---|---|
REGC | SISP-RT | REGC | SISP-RT | REGC | SISP-RT | |
Mainland China | 1.64 | 1.36 | 11.2 | 3.34 | 0.3 | 0.35 |
Humid region | 1.84 | 1.49 | 17.68 | 8.15 | 0.32 | 0.38 |
Semi-humid region | 1.27 | 1.14 | −12.33 | 0.57 | 0.22 | 0.26 |
Semi-arid region | 0.86 | 0.73 | 28.05 | 36.65 | 0.16 | 0.17 |
Arid region | 0.68 | 0.58 | 223.22 | 211.03 | 0.1 | 0.11 |
Mainland China | RMSE (mm/h) | RB (%) | CC |
---|---|---|---|
REGC | 1.64 | 11.2 | 0.3 |
60 h-c | 1.45 | 3.19 | 0.32 |
120 h-c | 1.36 | 3.34 | 0.35 |
180 h-c | 1.36 | 3.45 | 0.35 |
240 h-c | 1.36 | 3.59 | 0.34 |
120 h-i | 1.57 | 18.25 | 0.34 |
Climate Regions | 60 h-c | 120 h-c | 180 h-c | 240 h-c | 120 h-i |
---|---|---|---|---|---|
Humid region | 30 | 60 | 90 | 120 | 60 |
Semi-humid region | 20 | 50 | 60 | 70 | 50 |
Semi-arid region | 10 | 30 | 40 | 45 | 30 |
Arid region | 5 | 20 | 30 | 35 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yong, B.; Shen, Z.; Wu, H.; Yang, Y. A New Method for Hour-by-Hour Bias Adjustment of Satellite Precipitation Estimates over Mainland China. Remote Sens. 2023, 15, 1819. https://doi.org/10.3390/rs15071819
Li J, Yong B, Shen Z, Wu H, Yang Y. A New Method for Hour-by-Hour Bias Adjustment of Satellite Precipitation Estimates over Mainland China. Remote Sensing. 2023; 15(7):1819. https://doi.org/10.3390/rs15071819
Chicago/Turabian StyleLi, Ji, Bin Yong, Zhehui Shen, Hao Wu, and Yi Yang. 2023. "A New Method for Hour-by-Hour Bias Adjustment of Satellite Precipitation Estimates over Mainland China" Remote Sensing 15, no. 7: 1819. https://doi.org/10.3390/rs15071819
APA StyleLi, J., Yong, B., Shen, Z., Wu, H., & Yang, Y. (2023). A New Method for Hour-by-Hour Bias Adjustment of Satellite Precipitation Estimates over Mainland China. Remote Sensing, 15(7), 1819. https://doi.org/10.3390/rs15071819