A Multi-Objective Semantic Segmentation Algorithm Based on Improved U-Net Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Data Processing
2.2.1. Pre-Processing of Images
2.2.2. Label Production
2.3. Data Augmentation
2.4. Transfer Learning
2.5. Model Evaluation
3. Results
3.1. Experimental Environment
3.2. Experimental Results
3.2.1. Results of the Introduction of Data Augmentation Methods
3.2.2. Results of the Introduction of Transfer Learning Methods
3.2.3. Results of the DeepLab v3+ Model
3.2.4. Results of the PSPNet Model
3.2.5. Presentation of Prediction Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing 2020, 406, 302–321. [Google Scholar] [CrossRef]
- Thoma, M. A survey of semantic segmentation. arXiv 2016, arXiv:1602.06541. [Google Scholar]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M. A review of Semantic Segmentation Using Deep Neural Networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J. Automatic Recognition of Man-made Objects in High resolution Optical Remote Sensing Images by SVM Classification of Geometric Image Features. ISPRS J. Photogramm. Remote Sens. 2007, 62, 236–248. [Google Scholar] [CrossRef]
- Kang, B.; Nguyen, T. Random Forest with Learned Representations for Semantic Segmentation. IEEE Trans. Image Process. 2019, 28, 3542–3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A Deep Convolutional Encoder-decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Yin, X.H.; Wang, Y.C.; Li, D.Y. Suvery of Medical Image Segmentation Technology Based on U-Net Structure Improvement. Ruan Jian Xue Bao/J. Softw. 2021, 32, 519–550. [Google Scholar]
- Nalepa, J.; Mrukwa, G.; Piechaczek, S.; Lorenzo, P.R.; Marcinkiewicz, M.; Bobek-Billewicz, B.; Wawrzyniak, P.; Ulrych, P.; Szymanek, J.; Cwiek, M.; et al. Data Augmentation via Image Registration. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4250–4254. [Google Scholar]
- Nishio, M.; Noguchi, S.; Fujimoto, K. Automatic Pancreas Segmentation Using Coarse-scaled 2d Model of Deep Learning: Usefulness of Data Augmentation and Deep U-net. Appl. Sci. 2020, 10, 3360. [Google Scholar] [CrossRef]
- Jin, Y.W.; Jia, S.; Ashraf, A.B.; Hu, P. Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients. Cancers 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Uysal, E.S.; Bilici, M.Ş.; Zaza, B.S.; Özgenç, M.Y.; Boyar, O. Exploring the Limits of Data Augmentation for Retinal Vessel Segmentation. arXiv 2021, arXiv:2105.09365. [Google Scholar]
- Aboudi, F.; Drissi, C.; Kraiem, T. Efficient U-Net CNN with Data Augmentation for MRI Ischemic Stroke Brain Segmentation. In Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022; IEEE: Piscataway, NJ, USA, 2022; Volume 1, pp. 724–728. [Google Scholar]
- Sfakianakis, C.; Simantiris, G.; Tziritas, G. GUDU: Geometrically-constrained Ultrasound Data augmentation in U-Net for echocardiography semantic segmentation. Biomed. Signal Process. Control 2023, 82, 104557. [Google Scholar] [CrossRef]
- Lilay, M.Y.; Taye, G.D. Semantic Segmentation Model for Land Cover Classification from Satellite Images in Gambella National Park, Ethiopia. SN Appl. Sci. 2023, 5, 76. [Google Scholar] [CrossRef]
- Hashim, N.; Hamid, J.R.A. Multi-Level Image Segmentation for Urban Land-Cover Classifications. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 767, p. 012024. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Jaha, E.S. Locality-Sensitive Hashing of Soft Biometrics for Efficient Face Image Database Search and Retrieval. Electronics 2023, 12, 1360. [Google Scholar] [CrossRef]
- Simard, P.Y.; LeCun, Y.A.; Denker, J.S.; Victorri, B. Transformation Invariance in Pattern Recognition—Tangent Distance and Tangent Propagation. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 235–269. [Google Scholar]
- Hao, X.; Liu, L.; Yang, R.; Yin, L.; Zhang, L.; Li, X. A Review of Data Augmentation Methods of Remote Sensing Image Target Recognition. Remote Sens. 2023, 15, 827. [Google Scholar] [CrossRef]
Environment | Version |
---|---|
Operating system | Windows 10 (64-bit) |
Framework | Pytorch 1.2.0 |
Memory | 16G |
GPU | NVIDIA GeForce RTX 2080 SUPER |
CPU | Intel(R) Core(TM) i7—10700K CPU @ 3.80 GHz |
U-Net | DeepLab v3+ | PSPNet | Data Augmentation | Transfer Learning | Dataset | |
---|---|---|---|---|---|---|
SSTFM-1 | √ | T1 | ||||
SSTFM-2 | √ | √ | T2 | |||
SSTFM-3 | √ | √ | √ | T2 | ||
SSTFM-4 | √ | √ | √ | T2 | ||
SSTFM-5 | √ | √ | √ | T2 |
Arbor | Shrub | Grassland | Farmland | Bare_Ground | Water | Road | Construction_Land | Slag_Dump | ||
---|---|---|---|---|---|---|---|---|---|---|
IoU (%) | SSTFM-1 | 63.75 | 65.73 | 58.25 | 46.9 | 60.26 | 68.99 | 52.7 | 74.16 | 0 |
SSTFM-2 | 82.96 | 67.15 | 70.65 | 93.06 | 70.29 | 73.45 | 67.65 | 63.96 | 68.9 | |
SSTFM-3 | 83.83 | 69.53 | 72.69 | 93.88 | 73.63 | 76.95 | 70.65 | 69.09 | 71.35 | |
SSTFM-4 | 72.44 | 61.83 | 63.87 | 87.48 | 60.23 | 41.12 | 51.82 | 45.09 | 64.18 | |
SSTFM-5 | 83.03 | 65.23 | 68.44 | 88.20 | 67.37 | 50.94 | 51.81 | 60.41 | 67.32 | |
Recall (%) | SSTFM-1 | 73.91 | 88.51 | 65.88 | 65.73 | 73.21 | 74.93 | 64.34 | 85.89 | 0 |
SSTFM-2 | 90.01 | 80.95 | 83.88 | 95.5 | 85.7 | 83.4 | 79.62 | 78.36 | 78.54 | |
SSTFM-3 | 90.66 | 83.07 | 84.56 | 96.13 | 87.83 | 86.8 | 80.24 | 82.51 | 80 | |
SSTFM-4 | 81.99 | 79.77 | 74.1 | 92.93 | 85.92 | 48.1 | 61.07 | 57.96 | 74.09 | |
SSTFM-5 | 86.65 | 77.09 | 87.97 | 96.07 | 81.83 | 61.04 | 66.17 | 71.34 | 78.60 | |
Precision (%) | SSTFM-1 | 82.26 | 71.86 | 83.41 | 62.08 | 77.31 | 89.7 | 74.45 | 84.46 | 0 |
SSTFM-2 | 91.37 | 79.75 | 81.75 | 97.33 | 79.63 | 86.03 | 81.81 | 77.68 | 84.87 | |
SSTFM-3 | 91.75 | 81 | 83.81 | 97.56 | 82 | 87.15 | 85.52 | 80.94 | 86.85 | |
SSTFM-4 | 86.14 | 73.32 | 82.24 | 93.72 | 66.82 | 73.9 | 77.39 | 67.01 | 82.76 | |
SSTFM-5 | 95.21 | 80.92 | 75.51 | 91.51 | 79.22 | 75.49 | 70.47 | 79.76 | 82.42 | |
MIoU (%) | SSTFM-1 | 64 | 66 | 58 | 47 | 60 | 69 | 53 | 74 | 0 |
SSTFM-2 | 83 | 67 | 71 | 93 | 70 | 73 | 68 | 64 | 69 | |
SSTFM-3 | 84 | 70 | 73 | 94 | 74 | 77 | 71 | 69 | 71 | |
SSTFM-4 | 72 | 62 | 64 | 87 | 60 | 41 | 52 | 45 | 64 | |
SSTFM-5 | 83 | 65 | 68 | 88 | 67 | 51 | 52 | 60 | 67 |
MIoU (%) | MPA (%) | Accuracy (%) | |
---|---|---|---|
SSTFM-1 | 49.26 | 59.71 | 76.95 |
SSTFM-2 | 70.33 | 80.71 | 85.22 |
SSTFM-3 | 72.86 | 82.6 | 86.62 |
SSTFM-4 | 58.63 | 69.94 | 79.21 |
SSTFM-5 | 64.04 | 75.12 | 82.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Yin, L.; Li, X.; Zhang, L.; Yang, R. A Multi-Objective Semantic Segmentation Algorithm Based on Improved U-Net Networks. Remote Sens. 2023, 15, 1838. https://doi.org/10.3390/rs15071838
Hao X, Yin L, Li X, Zhang L, Yang R. A Multi-Objective Semantic Segmentation Algorithm Based on Improved U-Net Networks. Remote Sensing. 2023; 15(7):1838. https://doi.org/10.3390/rs15071838
Chicago/Turabian StyleHao, Xuejie, Lizeyan Yin, Xiuhong Li, Le Zhang, and Rongjin Yang. 2023. "A Multi-Objective Semantic Segmentation Algorithm Based on Improved U-Net Networks" Remote Sensing 15, no. 7: 1838. https://doi.org/10.3390/rs15071838