Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. ISAR Observation Geometry
2.2. 3D Geometry Reconstruction Method from Multi-View ISAR Images
2.2.1. Multi-View ISAR Images Acquisition
2.2.2. Key Point Extraction and Association
2.2.3. Projection Vector Construction
2.2.4. 3D Geometry Reconstruction
Algorithm 1: 3D Reconstruction Method from Multi-View ISAR Images. |
|
2.2.5. Algorithm Flowchart
2.3. Performance Analysis
2.3.1. Root-Mean-Square Error
2.3.2. The Reconstruction Accuracy and Integrity
3. Results
3.1. Effectiveness Validation
3.2. Comparison Analysis
3.3. Statistical Analysis
3.4. Validation on Measured Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonder, G.; Hughes, M.; Dickson, M.; Schoenfeld, M.; Gardner, J. Space fence radar overview. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium (ACES), Miami, FL, USA, 14–19 April 2019; pp. 1–2. [Google Scholar]
- Anger, S.; Jirousek, M.; Dill, S.; Peichl, M. IoSiS—A high performance experimental imaging radar for space surveillance. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–4. [Google Scholar]
- Kang, L.; Liang, B.S.; Luo, Y.; Zhang, Q. Sparse imaging for spinning space targets with short time observation. IEEE Sens. J. 2021, 21, 9090–9098. [Google Scholar] [CrossRef]
- Luo, X.; Guo, L.; Shang, S.; Song, D.; Li, X.; Liu, W. ISAR imaging method for non-cooperative slow rotation targets in space. In Proceedings of the 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–4. [Google Scholar]
- Liu, M.; Zhang, X. ISAR imaging of rotating targets via estimation of rotation velocity and keystone transform. In Proceedings of the 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), Tsukuba, Japan, 4–6 December 2017; pp. 265–267. [Google Scholar]
- Tian, X.; Bai, X.; Xue, R.; Qin, R.; Zhou, F. Fusion recognition of space targets with micromotion. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3116–3125. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, S. Applications of super resolution signal processing on monopulse radar three dimensional imaging. J. Xidian Univ. 1999, 26, 379–382. [Google Scholar]
- Li, H.; Ding, L. Research on monopulse 3-D imaging tests. J. Spacecr. TTC Technol. 2010, 29, 74–78. [Google Scholar]
- Li, J.; Quan, Y.; Xing, M.; Li, H.; Li, Y. 3-D ISAR imaging technology based on sum-diff beam. Chin. J. Radio Sci. 2010, 25, 281–286. [Google Scholar]
- Rong, J.; Wang, Y.; Han, T. Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging. IEEE Sens. J. 2019, 19, 8681–8693. [Google Scholar] [CrossRef]
- Wang, G.; Xia, X.; Chen, V. Three-dimensional ISAR imaging of maneuvering targets using three receivers. IEEE Trans. Image Process. 2001, 10, 436–447. [Google Scholar] [CrossRef]
- Liu, Y.; Song, M.; Wu, K.; Wang, R.; Deng, Y. High-quality 3-D InISAR imaging of maneuvering target based on a combined processing approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1036–1040. [Google Scholar] [CrossRef]
- Xu, G.; Xing, M.; Xia, X.; Zhang, L.; Chen, Q.; Bao, Z. 3D geometry and motion estimations of maneuvering targets for interferometric ISAR with sparse aperture. IEEE Trans. Image Process. 2016, 25, 2005–2020. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Luo, Y.; Zhang, Q.; Liu, X.; Liang, B. 3-D scattering image sparse reconstruction via radar network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Kang, L.; Luo, Y.; Zhang, Q.; Liu, X.; Liang, B. 3D scattering image reconstruction based on measurement optimization of a radar network. Remote Sens. Lett. 2020, 11, 697–706. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Jiang, L.; Liang, J.; Chen, Y. Reconstruction of three-dimensional images based on estimation of spinning target parameters in radar network. Remote Sens. 2018, 10, 1997. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Xing, M.; Xia, X.; Sun, G.; Fu, J.; Su, T. A multi-perspective 3D reconstruction method with single perspective instantaneous target attitude estimation. Remote Sens. 2019, 11, 1277. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Jiang, L.; Yang, Q.; Ren, X.; Wang, Z. High precision cross-range scaling and 3D geometry reconstruction of ISAR targets based on geometrical analysis. IEEE Access 2020, 8, 132415–132423. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, F.; Bai, X.; Tao, M.; Zhang, Z. Joint cross-range scaling and 3D geometry reconstruction of ISAR targets based on factorization method. IEEE Trans. Image Process. 2016, 25, 1740–1750. [Google Scholar] [CrossRef]
- Ullman, S. The Structure from Motion Theorem; MIT Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Leutenegger, S.; Chli, M.; Siegwart, R. BRISK: Binary robust invariant scalable keypoints. In Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Di, G.; Su, F.; Yang, H.; Fu, S. ISAR image scattering center association based on speeded-up robust features. Multimed. Tools. Appl. 2020, 79, 5065–5082. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, W.; Tian, B. ISAR image matching and 3D reconstruction based on improved SIFT method. In Proceedings of the 2019 International Conference on Electronic Engineering and Informatics (EEI), Nanjing, China, 8–10 November 2019; pp. 224–228. [Google Scholar]
- Lucas, B.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the the 7th International Joint Conference on Artificial Intelligence (IJCAI 81), Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Shi, J.; Tomasi, C. Good features to track. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Liu, L.; Zhou, F.; Bai, X. Method for scatterer trajectory association of sequential ISAR images based on Markov chain Monte Carlo algorithm. IET Radar Sonar Navig. 2018, 12, 1535–1542. [Google Scholar] [CrossRef]
- Du, R.; Liu, L.; Bai, X.; Zhou, F. A new scatterer trajectory association method for ISAR image sequence utilizing multiple hypothesis tracking algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Bi, Y.; Wei, S.; Wang, J.; Zhang, Y.; Sun, Z.; Yuan, C. New method of scatterers association and 3D reconstruction based on multi-hypothesis tracking. J. Beijing Univ. Aeronaut. Astronaut. 2016, 42, 1219–1227. [Google Scholar] [CrossRef]
- Wang, X.; Guo, B.; Shang, C. 3D reconstruction of target geometry based on 2D data of inverse synthetic aperture radar images. J. Electron. Inf. Technol. 2013, 35, 2475–2480. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Z.; Zhou, F.; Shi, X. A new 3-D geometry reconstruction method of space target utilizing the scatterer energy accumulation of ISAR image sequence. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8345–8357. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, L.; Du, R.; Zhou, F. Three-dimensional geometry reconstruction method for slowly rotating space targets utilizing ISAR image sequence. Remote Sens. 2022, 14, 1114. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, D.; Wang, Z. Coordinate transformation methods from the inertial system to the centroid orbit system. Aerosp. Control 2007, 25, 4–8. [Google Scholar]
- Xin, H.; Bai, X.; Song, Y.; Li, B.; Tao, R. ISAR imaging of target with complex motion associated with the fractional Fourier transform. Digit. Signal Process. 2018, 83, 332–345. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, T.; Zhang, L.; Xing, M. Translational motion compensation for ISAR imaging based on joint autofocusing under the low SNR. J. Xidian Univ. 2012, 39, 63–71. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, F.; Tao, M.; Sun, P.; Zhang, Z. Adaptive translational motion compensation method for ISAR imaging under low SNR based on particle swarm optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5146–5157. [Google Scholar] [CrossRef]
- Li, D.; Ren, J.; Liu, H.; Yang, Z.; Wan, J.; Chen, Z. A novel ISAR imaging approach for maneuvering targets with satellite-borne platform. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, G.; Zhou, R.; Zhang, H.; Hong, W. Multi-channel back-projection algorithm for mmwave automotive MIMO SAR imaging with Doppler-division multiplexing. IEEE J. Sel. Top. Signal Process. 2022. early access. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Hong, W. Structured low-rank and sparse method for ISAR imaging with 2-D compressive sampling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yuan, Y.; Luo, Y.; Kang, L.; Ni, J.; Zhang, Q. Range alignment in ISAR imaging based on deep recurrent neural network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Yu, H.; Chen, J.; Xing, M.; Hong, W. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends. IEEE Geosc. Remote Sen. Mag. 2022, 10, 32–69. [Google Scholar] [CrossRef]
- Fan, H.; Ren, L.; Mao, E.; Liu, Q. A high-precision method of phase-derived velocity measurement and its application in motion compensation of ISAR imaging. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1–18. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, H.; Wei, Y. Simple baselines for human pose estimation and tracking. In Proceedings of the Computer Vision and Pattern Recognition, Munich, Germany, 8–14 September 2018; pp. 472–487. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5686–5696. [Google Scholar]
- Cheng, B.; Xiao, B.; Wang, J.; Shi, H.; Huang, T.; Zhang, L. HigherHRNet: Scale-aware representation learning for bottom-up human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Electr Network, Seattle, WA, USA, 14–19 June 2020; pp. 5385–5394. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 386–397. [Google Scholar]
- Andrey, V.O.; Sergei, A.T. Method of Physical Optics. In Modern Electromagnetic Scattering Theory with Applications; Wiley: Hoboken, NJ, USA, 2013; pp. 565–633. [Google Scholar]
- Lars, F. Monitoring the Re-Entry of the Chinese Space Station Tiangong-1 with TIRA. Available online: https://www.fhr.fraunhofer.de/en/businessunits/space/monitoring-the-re-entry-of-the-chinese-space-station-tiangong-1-with-tira.html (accessed on 1 April 2018).
- CAAC. Introduction of the Yak-42 Series. Available online: http://www.caac.gov.cn/GYMH/MHBK/HKQJS/201509/t20150923_1871.html (accessed on 23 September 2015).
HST | Aqua | Tiangong-1 | |
---|---|---|---|
The pitch angle of rotational axis (°) | - | 130 | [120, 140] * |
The azimuth angle of rotational axis (°) | - | 120 | [110, 130] * |
The rotational speed (rad/s) | 0 | 0.0524 | [0, 0.0524] * |
HST | Aqua | Tiangong-1 | |
---|---|---|---|
RMSE (m) | 0.0262 | 0.0635 | 0.0634 |
Reconstruction accuracy (%) | 96.88 | 93.68 | 90.73 |
Reconstruction integrity (%) | 91.18 | 91.51 | 83.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Jin, X.; Liu, L.; Zhou, F. Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning. Remote Sens. 2023, 15, 1882. https://doi.org/10.3390/rs15071882
Zhou Z, Jin X, Liu L, Zhou F. Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning. Remote Sensing. 2023; 15(7):1882. https://doi.org/10.3390/rs15071882
Chicago/Turabian StyleZhou, Zuobang, Xiangguo Jin, Lei Liu, and Feng Zhou. 2023. "Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning" Remote Sensing 15, no. 7: 1882. https://doi.org/10.3390/rs15071882
APA StyleZhou, Z., Jin, X., Liu, L., & Zhou, F. (2023). Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning. Remote Sensing, 15(7), 1882. https://doi.org/10.3390/rs15071882