An Optimized Workflow for Digital Surface Model Series Generation Based on Historical Aerial Images: Testing and Quality Assessment in the Beach-Dune System of Sa Ràpita-Es Trenc (Mallorca, Spain)
Abstract
:1. Introduction
- To implement an optimized (minimizing elevation errors, reducing processing time, and saving memory) and reproducible (standardization of the process) workflow for the generation of a 4D (x, y, z, time) high-resolution (1 m pixel size) DSM series, based on historical aerial photographs.
- To assess the quality (accuracy and point density) of the generated products (hDSM series), highlighting the advantages and shortcomings of the proposed workflow.
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Historical Aerial Image Series
2.2.2. LiDAR ALS
2.3. GNSS: Reference Field Survey
2.4. Ground Control Points
2.5. LiDAR ALS and Historical Aerial Photographs Processing
2.5.1. ALS Processing for DSM Generation
2.5.2. Historical Aerial Photograms SfM & MVS Processing DSM
SfM Process to Generate Optimized Sparse Cloud
MVS Process to Generate Dense Point Clouds and DSM
2.6. Quality Assessments
2.6.1. ALS-Derived DSM
2.6.2. Aerial-Photographs
Optimized Sparse Cloud in SfM
Global Quality Assessment and Calibration of SfM-MVS DSMs
2.6.3. Local Quality Assessment of DSMs Series
3. Results
3.1. ALS-Derived DSM
3.2. Optimized Sparse Cloud in SfM
3.3. Calibrated DSMs Derived from Aerial Photography
3.4. Quality Assessments of the DSM Series
3.5. Historical DSM Series Showcase
4. Discussion
4.1. ALS-Derived DSM
4.2. Error Sources and Steps Prior to SfM
4.3. Optimized Sparse Cloud in SfM
4.4. Dense Clouds and Calibrated DSMs Derived from Aerial Photography
4.5. Quality Assessment of the DSM Series
5. Conclusions
- The assumed reliability and availability of using PNOA ALS coverages in tandem with the LAScatalog processing engine allows for the development of simple workflows to generate valid ALS-derived DSM to validate the quality of the SfM-MVS process and hDSM series.
- Applied optimization and ALS checkpoint-based georeferencing improve the historical SfM-MVS workflow by providing the necessary systematic quality assessment.
- The calibration method presented has the potential to reduce elevation discrepancies between the hDSM series and ALS-derived 2019 DSM reference elevations.
- The quality of hDSMs generated using recent (2008) aerial photography is equivalent to ALS datasets in terms of point density for interpolation (hence the reachable spatial resolution) and close in terms of accuracy (elevation error).
- Low overlap and contrast areas in black and white images generate significant elevation underestimations due to the inability to recognize reference (tie) points.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viles, H. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science? Geomorphology 2016, 270, 121–133. [Google Scholar] [CrossRef]
- Sofia, G. Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward. Geomorphology 2020, 355, 107055. [Google Scholar] [CrossRef]
- Passalacqua, P.; Belmont, P.; Staley, D.M.; Simley, J.D.; Arrowsmith, J.R.; Bode, C.A.; Crosby, C.; DeLong, S.B.; Glenn, N.F.; Kelly, S.A.; et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth-Sci. Rev. 2015, 148, 174–193. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q. Digital Elevation Model and Digital Surface Model. Int. Encycl. Geogr. People Earth Environ. Technol. 2017, 1–17. [Google Scholar] [CrossRef]
- Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. Dev. Earth Surf. Process. 2020, 23, 1–24. [Google Scholar] [CrossRef]
- Preti, F.; Tarolli, P.; Dani, A.; Calligaro, S.; Prosdocimi, M. LiDAR derived high resolution topography: The next challenge for the analysis of terraces stability and vineyard soil erosion. J. Agric. Eng. 2013, 44 (Suppl. S2), e16. [Google Scholar] [CrossRef]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Doyle, T.B.; Woodroffe, C.D. The application of LiDAR to investigate foredune morphology and vegetation. Geomorphology 2018, 303, 106–121. [Google Scholar] [CrossRef]
- Warrick, J.A.; Ritchie, A.C.; Adelman, G.; Adelman, K.; Limber, P.W. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. J. Coast. Res. 2017, 33, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.; Gayer, E. Decennial Geomorphic Transport From Archived Time Series Digital Elevation Models: A cookbook for tropical and alpine environments. IEEE Geosci. Remote Sens. Mag. 2022, 10, 120–134. [Google Scholar] [CrossRef]
- Marteau, B.; Vericat, D.; Gibbins, C.; Batalla, R.J.; Green, D.R. Application of Structure-from-Motion photogrammetry to river restoration. Earth Surf. Process. Landf. 2017, 42, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Llena, M.; Vericat, D.; Cavalli, M.; Crema, S.; Smith, M.W. The effects of land use and topographic changes on sediment connectivity in mountain catchments. Sci. Total Environ. 2019, 660, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Bozek, P.; Janus, J.; Mitka, B. Analysis of Changes in Forest Structure using Point Clouds from Historical Aerial Photographs. Remote Sens. 2019, 11, 2259. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef] [Green Version]
- Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-Lacruz, J.; Amengual, A.; Garcia, C.; Morán-Tejeda, E.; Homar, V.; Maimó-Far, A.; Hermoso, A.; Ramis, C.; Romero, R. Hydro-meteorological reconstruction and geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant Llorenç, Mallorca (Spain). Nat. Hazards Earth Syst. Sci. 2019, 19, 2597–2617. [Google Scholar] [CrossRef] [Green Version]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Roelens, J.; Rosier, I.; Dondeyne, S.; Van Orshoven, J.; Diels, J. Extracting drainage networks and their connectivity using LiDAR data. Hydrol. Process. 2018, 32, 1026–1037. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery. Hydrol. Earth Syst. Sci. 2017, 21, 3579–3595. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, M.; Vericat, D.; Pereira, P. Mapping water and sediment connectivity. Sci. Total Environ. 2019, 673, 763–767. [Google Scholar] [CrossRef]
- Sofia, G.; Bailly, J.S.; Chehata, N.; Tarolli, P.; Levavasseur, F. Comparison of Pleiades and LiDAR Digital Elevation Models for Terraces Detection in Farmlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Rechsteiner, C.; Zellweger, F.; Gerber, A.; Breiner, F.T.; Bollmann, K. Remotely sensed forest habitat structures improve regional species conservation. Remote Sens. Ecol. Conserv. 2017, 3, 247–258. [Google Scholar] [CrossRef]
- Revilla, S.; Lamelas, M.T.; Domingo, D.; de la Riva, J.; Montorio, R.; Montealegre, A.L.; García-Martín, A. Assessing the Potential of the DART Model to Discrete Return LiDAR Simulation—Application to Fuel Type Mapping. Remote Sens. 2021, 13, 342. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Bizzi, S.; Piégay, H.; Demarchi, L.; Van de Bund, W.; Weissteiner, C.J.; Gob, F. LiDAR-based fluvial remote sensing to assess 50–100-year human-driven channel changes at a regional level: The case of the Piedmont Region, Italy. Earth Surf. Process. Landf. 2019, 44, 471–489. [Google Scholar] [CrossRef]
- Dong, P.; Xia, J.; Zhong, R.; Zhao, Z.; Tan, S. A New Method for Automated Measurement of Sand Dune Migration Based on Multi-Temporal LiDAR-Derived Digital Elevation Models. Remote Sens. 2021, 13, 3084. [Google Scholar] [CrossRef]
- Sofia, G.; Fontana, G.D.; Tarolli, P. High-resolution topography and anthropogenic feature extraction: Testing geomorphometric parameters in floodplains. Hydrol. Process. 2014, 28, 2046–2061. [Google Scholar] [CrossRef]
- Pawłuszek, K.; Marczak, S.; Borkowski, A.; Tarolli, P. Multi-aspect analysis of object-oriented landslide detection based on an extended set of LiDAR-derived terrain features. ISPRS Int. J. Geo-Inf. 2019, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Van Den Eeckhaut, M.; Kerle, N.; Poesen, J.; Hervás, J. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data. Geomorphology 2012, 173–174, 30–42. [Google Scholar] [CrossRef]
- Lourenço, P.; Teodoro, A.C.; Gonçalves, J.A.; Honrado, J.P.; Cunha, M.; Sillero, N. NC-ND license Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102263. [Google Scholar] [CrossRef]
- Mora, O.E.; Gabriela Lenzano, M.; Toth, C.K.; Grejner-Brzezinska, D.A.; Fayne, J.V. Landslide change detection based on Multi-Temporal airborne LIDAR-derived DEMs. Geosciences 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.K.; Hsiao, K.H.; Shih, P.T.Y. A geomorphological model for landslide detection using airborne lidar data. J. Mar. Sci. Technol. 2012, 20, 629–638. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Goetz, J.; Brenning, A.; Marcer, M.; Bodin, X. Modeling the precision of structure-from-motion multi-view stereo digital elevation models from repeated close-range aerial surveys. Remote Sens. Environ. 2018, 210, 208–216. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Akgul, M.; Yurtseven, H.; Gulci, S.; Akay, A.E. Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume. Arab. J. Sci. Eng. 2018, 43, 1893–1909. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Allan, B.; Kennedy, D.M.; Leach, C.; O’Brien, S.; Ierodiaconou, D. Quantifying decadal volumetric changes along sandy beaches using improved historical aerial photographic models and contemporary data. Earth Surf. Process. Landf. 2021, 46, 1882–1897. [Google Scholar] [CrossRef]
- Grottoli, E.; Biausque, M.; Rogers, D.; Jackson, D.W.T.; Cooper, J.A.G. Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3d application for coastal dune monitoring. Remote Sens. 2021, 13, 95. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Kennedy, D.M.; Niyazi, Y.; Leach, C.; Konlechner, T.M.; Ierodiaconou, D. Structure-from-motion photogrammetry analysis of historical aerial photography: Determining beach volumetric change over decadal scales. Earth Surf. Process. Landf. 2020, 45, 2540–2555. [Google Scholar] [CrossRef]
- Ishiguro, S.; Yamano, H.; Oguma, H. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion–multi-view stereo technology. Geomorphology 2016, 268, 64–71. [Google Scholar] [CrossRef]
- Sevara, C.; Verhoeven, G.; Doneus, M.; Drag, E. Historic Aerial Photographic Archives for European Archaeology. Eur. J. Archaeol. 2012, 15, 217–236. [Google Scholar] [CrossRef]
- Gomez, C.; Hayakawa, Y.; Obanawa, H. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology 2015, 242, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV Platforms and the SfM-MVS Approach in the 3D Surveys and Modelling: A Review in the Cultural Heritage Field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Berra, E.F.; Peppa, M.V. Advances and challenges of UAV SFM MVS photogrammetry and remote sensing: Short review. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 533–538. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, C.; Jiang, W. Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Luo, S.; Cai, Y.; Guo, S. An Improved Matting-SfM Algorithm for 3D Reconstruction of Self-Rotating Objects. Mathematics 2022, 10, 2892. [Google Scholar] [CrossRef]
- Montgomery, D.R. Dreams of natural streams. Science 2008, 319, 291–292. [Google Scholar] [CrossRef]
- Pérez, J.A.; Bascon, F.M.; Charro, M.C. Photogrammetric usage of 1956-57 usaf aerial photography of Spain. Photogramm. Rec. 2014, 29, 108–124. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Aguilar, F.J.; Fernández, I.; Mills, J.P. Accuracy Assessment of Commercial Self-Calibrating Bundle Adjustment Routines Applied to Archival Aerial Photography. Photogramm. Rec. 2013, 28, 96–114. [Google Scholar] [CrossRef]
- Martínez, M.L.; Psuty, N.P.; Lubke, R.A. A Perspective on Coastal Dunes. In Coastal Dunes. Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2008; Volume 171, pp. 3–10. [Google Scholar] [CrossRef]
- Prieto, J.Á.M.; Munar FX, R.; Perea, A.R.; Gual, M.M.; Ferrer, B.G. La erosión histórica de la playa de sa Ràpita (S. Mallorca). Investig. Geográficas 2016, 66, 135. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Pujol, L.; Orfila, A.; Cañellas, B.; Alvarez-Ellacuria, A.; Méndez, F.J.; Medina, R.; Tintoré, J. Morphodynamic classification of sandy beaches in low energetic marine environment. Mar. Geol. 2007, 242, 235–246. [Google Scholar] [CrossRef]
- Prieto, J.Á.M.; Munar, F.X.R.; Perea, A.R.; Buades, G.X.P.; Gual, M.M.; Ferrer, B.G. Análisis de la evolución histórica de la línea de costa de la playa de Es Trenc (S. de Mallorca): Causas y consecuencias. GeoFocus. Int. Rev. Geogr. Inf. Sci. Technol. 2018, 21, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Persia, M.; Barca, E.; Greco, R.; Marzulli, M.I.; Tartarino, P. Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points. Remote Sens. 2020, 12, 2232. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Garcia, C.; Morán-Tejeda, E.; Capó, A.; Mestre-Runge, C. Monitorización de procesos recientes de subsidencia en Mallorca. In Monografias de la Societat d’Historia Natural de Balears; Societat d’Història Natural de les Balears: Palma, Spain, 2021; pp. 243–258. ISBN 978-84-09-34554-0. [Google Scholar]
- QGIS developement team QGIS Geographic Information System. Open-Source Geospatial Foundation Project 2019. Available online: https://www.qgis.org/en/site/ (accessed on 11 April 2023).
- Liu, X.; Zhang, Z. Ground truth extraction from LiDAR data for image orthorectification. In Proceedings of the 2008 International Workshop on Earth Observation and Remote Sensing Applications, Beijing, China, 30 June–2 July 2008. [Google Scholar] [CrossRef] [Green Version]
- Midgley, N.G.; Tonkin, T.N. Reconstruction of former glacier surface topography from archive oblique aerial images. Geomorphology 2017, 282, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Agisoft, L.L.C. Agisoft Metashape (v 1.7.3) 2022. Available online: https://www.agisoft.com/ (accessed on 11 April 2023).
- Ludwig, M.; Runge, C.M.; Friess, N.; Koch, T.L.; Richter, S.; Seyfried, S.; Wraase, L.; Lobo, A.; Sebastià, M.T.; Reudenbach, C.; et al. Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS Orthomosaics. Remote Sens. 2020, 12, 3831. [Google Scholar] [CrossRef]
- Polidori, L.; Hage, M. El Digital elevation model quality assessment methods: A critical review. Remote Sens. 2020, 12, 3522. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Knuth, F.; Shean, D.; Bhushan, S.; Schwat, E.; Alexandrov, O.; McNeil, C.; Dehecq, A.; Florentine, C.; O’Neel, S. Historical Structure from Motion (HSfM): Automated processing of historical aerial photographs for long-term topographic change analysis. Remote Sens. Environ. 2023, 285, 113379. [Google Scholar] [CrossRef]
- Bakker, M.; Lane, S.N. Archival photogrammetric analysis of river–floodplain systems using Structure from Motion (SfM) methods. Earth Surf. Process. Landf. 2017, 42, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Casella, E.; Drechsel, J.; Winter, C.; Benninghoff, M.; Rovere, A. Accuracy of sand beach topography surveying by drones and photogrammetry. Geo-Mar. Lett. 2020, 40, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Seccaroni, S.; Santangelo, M.; Marchesini, I.; Mondini, A.C.; Cardinali, M. High Resolution Historical Topography: Getting More from Archival Aerial Photographs. Proceedings 2018, 2, 347. [Google Scholar] [CrossRef] [Green Version]
- Giordano, S.; Le Bris, A.; Mallet, C. Toward automatic georeferencing of archival aerial photogrammetric surveys. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-2, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Girod, L.; Ivar, N.; Couderette, F.; Nuth, C.; Kääb, A. Precise DEM extraction from Svalbard using 1936 high oblique imagery. Geosci. Instrum. Methods Data Syst. 2018, 7, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Mölg, N.; Bolch, T. Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens. 2017, 9, 1021. [Google Scholar] [CrossRef] [Green Version]
Series | R2 | Elevation MAE (m) | Elevation RMSE (m) | RMSE Z (m) ALS Official PNOA |
---|---|---|---|---|
LiDAR 2014 | 0.9991 | 0.20 | 0.45 | 0.20 |
LiDAR 2019 | 0.9997 | 0.17 | 0.26 | 0.15 |
Raw Sparse Cloud | ||||||
---|---|---|---|---|---|---|
Series | Photographs (nb.) | Precision Alignment | Tie Points (nb.) | R2 | Elevation MAE (m) | RMS Reprojection Error (px) |
1945 | 5 | high | 13,700 | 0.157 | 372.7 | 2.148 |
1979 | 42 | medium | 157,548 | 0.311 | 2856.5 | 1.032 |
1984 | 29 | medium | 78,351 | 0.372 | 4595.5 | 1.441 |
2008 | 59 | highest | 85,207 | 0.986 | 95.3 | 0.192 |
Optimized Sparse Cloud | ||||||
Series | GCPs (nb.) | Filtered Tie Points (%) | Tie Points (nb.) | R2 | Elevation MAE (m) | RMS Reprojection Error (px) |
1945 | 61 | 31.01 | 9451 | 0.583 | 8.47 | 1.259 |
1979 | 80 | 8.80 | 143,683 | 0.996 | 1.12 | 0.822 |
1984 | 88 | 7.08 | 72,802 | 0.994 | 1.52 | 1.339 |
2008 | 92 | 0.54 | 84,740 | 0.994 | 1.25 | 0.189 |
Series | R2 | Non Calibrated DSM Elevation MAE (m) | Equation (DSM–INTERCEPT)/Slope | Calibrated DSM Elevation MAE (m) |
---|---|---|---|---|
1945 | 0.4907 | 7.75 | (DSM–4.272)/1.124 | 5.21 |
1979 | 0.8942 | 1.14 | (DSM–1.919)/0.901 | 1.67 |
1984 | 0.9880 | 0.87 | (DSM–0.456)/1.035 | 0.71 |
2008 | 0.9966 | 0.43 | (DSM–(−0.065)/0.991 | 0.41 |
hDSM Series | Elevation MAE (m) | Global Moran I. | Global Geary I. | Mean Local Moran I. | Gridded Point Cloud Density (pts/m2) | Nominal Point Spacing (m) |
---|---|---|---|---|---|---|
1945 * | 5.21 | 0.9987824 | 0.0001006437 | 0.9998985 | 0.036 | 5.259 |
1979 * | 1.67 | 0.9982829 | 0.0009161929 | 0.9990812 | 0.373 | 1.637 |
1984 * | 0.71 | 0.9987716 | 0.0003064591 | 0.9996913 | 0.140 | 2.665 |
2008 * | 0.41 | 0.9975945 | 0.001429191 | 0.9985678 | 0.686 | 1.206 |
2014 ** | 0.20 | 0.9951387 | 0.003908876 | 0.9960857 | 0.318 | 1.773 |
2019 ** | 0.17 | 0.9934609 | 0.00558239 | 0.9944128 | 0.601 | 1.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mestre-Runge, C.; Lorenzo-Lacruz, J.; Ortega-Mclear, A.; Garcia, C. An Optimized Workflow for Digital Surface Model Series Generation Based on Historical Aerial Images: Testing and Quality Assessment in the Beach-Dune System of Sa Ràpita-Es Trenc (Mallorca, Spain). Remote Sens. 2023, 15, 2044. https://doi.org/10.3390/rs15082044
Mestre-Runge C, Lorenzo-Lacruz J, Ortega-Mclear A, Garcia C. An Optimized Workflow for Digital Surface Model Series Generation Based on Historical Aerial Images: Testing and Quality Assessment in the Beach-Dune System of Sa Ràpita-Es Trenc (Mallorca, Spain). Remote Sensing. 2023; 15(8):2044. https://doi.org/10.3390/rs15082044
Chicago/Turabian StyleMestre-Runge, Christian, Jorge Lorenzo-Lacruz, Aaron Ortega-Mclear, and Celso Garcia. 2023. "An Optimized Workflow for Digital Surface Model Series Generation Based on Historical Aerial Images: Testing and Quality Assessment in the Beach-Dune System of Sa Ràpita-Es Trenc (Mallorca, Spain)" Remote Sensing 15, no. 8: 2044. https://doi.org/10.3390/rs15082044
APA StyleMestre-Runge, C., Lorenzo-Lacruz, J., Ortega-Mclear, A., & Garcia, C. (2023). An Optimized Workflow for Digital Surface Model Series Generation Based on Historical Aerial Images: Testing and Quality Assessment in the Beach-Dune System of Sa Ràpita-Es Trenc (Mallorca, Spain). Remote Sensing, 15(8), 2044. https://doi.org/10.3390/rs15082044