Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Volcanic Cloud Top Height
2.1.1. Darkest Pixel Method (DP)
2.1.2. Cloud Tracking Method (CT)
2.1.3. HYSPLIT Method (HY)
2.2. Volcanic Cloud Detection and Discrimination
2.3. Particles and SO2 Retrieval Method
2.4. Other Methods Used for Cross-Comparison
2.4.1. VONA
2.4.2. TROPOMI
2.4.3. LUTp
3. Results
3.1. Volcanic Cloud Top Height
3.2. BTD Thresholds
3.3. Total Mass of Ash, Ice, and SO2
3.4. Products Cross-Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms
AOD0.55 | Aerosol optical depth at 550 nm |
BT | Brightness temperature |
BTD | Brightness Temperature Difference |
CT | Cloud Tracking method |
COBRA | Covariance-Based Retrieval Algorithm |
DP | Darkest pixel method |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory model |
HY | HYSPLIT method |
INGV | Istituto Nazionale di Geofisica e Vulcanologia |
LF | Lava fountain |
LUTp | Look-Up Tables procedure |
m | Columnar abundance density |
M | Total mass |
MAST | Multimission Acquisition SysTem |
MSG | Meteosat Second Generation geostationary satellite |
NSEC | New Southeast Crater |
PTH | Pressure-Temperature-Humidity |
PW | Precipitable water |
Re | Effective radius |
RTM | Radiative Transfer Models |
S5P | Sentinel-5 Precursor |
SEVIRI | Spinning Enhanced Visible and InfraRed Imager |
SO2 | Sulphur dioxide |
SST | Sea surface temperature |
TIR | Thermal InfraRed |
TROPOMI | TROPOspheric Monitoring Instrument |
VCTH | Volcanic cloud top height |
VONA | Volcano Observatory Notices for Aviation bulletin |
VPR | Volcanic Plume Retrieval procedure |
VZA | View Zenith Angle |
Appendix A
LF n. | Date | Time [UTC] | VCTH [km] | SO2 Mass [Gg] | Ash Mass [Gg] | Ice Mass [Gg] | |||
---|---|---|---|---|---|---|---|---|---|
VPR | LUTp | VPR | LUTp | VPR | LUTp | ||||
1–3 | 13-12-2020 | 22:25:30 | 7.0 | 1.6 | 3.0 | 0.8 | 1.8 | 2.2 | 3.2 |
4 | 21-12-2020 | 09:25:30 | 11.4 | 18.7 | 13.3 | 16.5 | 13.7 | 44.1 | 59.8 |
5 | 22-12-2020 | 05:10:30 | 6.5 | 5.2 | 5.3 | 2.7 | 6.9 | 6.2 | 14.6 |
6 | 18-01-2021 | 20:25:30 | 4.0 | 6.7 | 6.0 | 1.8 | 5.0 | 10.3 | 21.2 |
7 | 16-02-2021 | 16:55:30 | 10.1 | 9.0 | 6.3 | 11.7 | 10.4 | 22.3 | 21.5 |
8 | 18-02-2021 | 00:25:30 | 9.2 | 7.9 | 4.8 | 3.9 | 4.9 | 16.6 | 18.2 |
9 | 19-02-2021 | 09:40:30 | 11.0 | 18.4 | 10.1 | 19.0 | 13.4 | 141.9 | 107.8 |
10 | 21-02-2021 | 00:55:30 | 11.4 | 13.9 | 7.8 | 13.8 | 13.7 | 57.4 | 56.4 |
11–12 | 22-02-2021 | 23:55:30 | 11.6 | 24.8 | 10.6 | 26.5 | 24.6 | 119.6 | 83.2 |
13 | 24-02-2021 | 20:55:30 | 11.2 | 12.0 | 9.7 | 13.1 | 12.8 | 65.6 | 61.9 |
14 | 28-02-2021 | 08:25:30 | 11.1 | 18.5 | 16.1 | 26.5 | 20.6 | 84.2 | 62.3 |
15 | 02-03-2021 | 14:40:30 | 8.9 | 20.1 | 13.6 | 3.1 | 5.2 | 39.2 | 35.2 |
16 | 04-03-2021 | 02:55:30 | 4.7 | 0.7 | 0.9 | 0.9 | 1.2 | 0.6 | 0.7 |
17 | 04-03-2021 | 08:40:30 | 11.6 | 15.0 | 6.9 | 21.4 | 19.1 | 120.3 | 64.4 |
18 | 07-03-2021 | 06:55:30 | 11.6 | 22.8 | 15.6 | 36.0 | 28.4 | 122.8 | 88.9 |
19 | 10-03-2021 | 01:40:30 | 9.1 | 54.8 | 20.2 | 89.9 | 72.7 | 219.6 | 208.2 |
20 | 12-03-2021 | 09:25:30 | 10.8 | 21.8 | 15.0 | 22.3 | 17.4 | 108.0 | 91.8 |
21 | 15-03-2021 | 00:55:30 | 4.7 | 16.4 | 10.6 | 11.0 | 21.3 | 20.0 | 38.1 |
22 | 17-03-2021 | 03:10:30 | 5.1 | 14.6 | 15.1 | 2.8 | 5.7 | 20.2 | 28.9 |
23 | 19-03-2021 | 09:55:30 | 10.1 | 49.4 | 29.1 | 113.1 | 114.6 | 318.2 | 347.0 |
24 | 24-03-2021 | 03:40:30 | 5.6 | 5.8 | 9.3 | 2.8 | 6.6 | 7.9 | 16.5 |
25 | 01-04-2021 | 00:55:30 | 6.9 | 4.6 | 1.8 | 2.9 | 11.7 | 15.0 | 2.6 |
26 | 19-05-2021 | 00:40:30 | 5.7 | 0.6 | 5.6 | 0.3 | 1.2 | 3.1 | 6.8 |
27 | 21-05-2021 | 03:40:30 | 5.6 | 0.9 | 3.1 | 1.1 | 2.3 | 5.2 | 4.0 |
28 | 22-05-2021 | 21:40:30 | 6.4 | 0.4 | 1.5 | 1.4 | 2.6 | 0.9 | 2.7 |
29 | 24-05-2021 | 21:25:30 | 7.2 | 0.9 | 1.8 | 1.9 | 3.2 | 0.3 | 0.6 |
30 | 25-05-2021 | 18:55:30 | 4.3 | 1.1 | 1.8 | 0.4 | 0.8 | 0.0 | 0.0 |
31 | 26-05-2021 | 11:10:30 | 5.6 | 1.3 | 1.8 | 1.1 | 1.4 | 2.3 | 0.3 |
36 | 30-05-2021 | 05:10:30 | 6.0 | 2.4 | 1.7 | 0.8 | 1.8 | 5.9 | 8.5 |
37 | 02-06-2021 | 10:25:30 | 6.3 | 2.8 | 3.6 | 0.7 | 1.2 | 5.0 | 10.1 |
38 | 04-06-2021 | 17:25:30 | 7.1 | 1.7 | 3.2 | 1.8 | 3.6 | 8.6 | 6.3 |
39 | 12-06-2021 | 21:25:30 | 7.2 | 3.2 | 3.9 | 1.6 | 3.4 | 3.8 | 10.4 |
40 | 14-06-2021 | 21:55:30 | 5.3 | 2.7 | 4.5 | 0.7 | 1.2 | 3.1 | 3.8 |
41 | 16-06-2021 | 12:25:30 | 7.8 | 2.9 | 3.7 | 0.3 | 0.3 | 2.8 | 3.1 |
42 | 17-06-2021 | 23:40:30 | 6.0 | 3.6 | 2.9 | 0.5 | 1.2 | 5.3 | 15.6 |
43 | 19-06-2021 | 19:40:30 | 10.3 | 2.8 | 3.6 | 4.3 | 6.0 | 1.0 | 1.4 |
44 | 20-06-2021 | 23:40:30 | 10.2 | 4.0 | 3.4 | 5.9 | 5.6 | 9.9 | 13.0 |
45 | 22-06-2021 | 03:40:30 | 10.8 | 5.7 | 5.0 | 11.1 | 13.2 | 7.8 | 17.7 |
46 | 23-06-2021 | 03:25:30 | 10.9 | 6.4 | 6.0 | 10.9 | 11.1 | 10.2 | 12.6 |
47 | 23-06-2021 | 19:10:30 | 11.1 | 4.2 | 2.2 | 5.5 | 5.5 | 14.3 | 23.2 |
48 | 24-06-2021 | 10:40:30 | 11.4 | 7.4 | 4.1 | 5.5 | 4.9 | 29.9 | 35.7 |
49 | 25-06-2021 | 01:40:30 | 9.0 | 1.0 | 1.3 | 1.9 | 2.6 | 1.0 | 1.9 |
50 | 25-06-2021 | 19:25:30 | 9.2 | 2.2 | 2.8 | 3.2 | 4.9 | 1.4 | 3.2 |
51 | 26-06-2021 | 16:40:30 | 11.4 | 2.9 | 2.0 | 4.1 | 9.7 | 10.6 | 14.0 |
52 | 27-06-2021 | 09:40:30 | 10.1 | 4.0 | 2.5 | 5.6 | 6.0 | 26.4 | 44.9 |
53 | 28-06-2021 | 15:10:30 | 11.5 | 7.8 | 6.1 | 11.1 | 10.6 | 34.1 | 46.2 |
54 | 01-07-2021 | 23:40:30 | 5.8 | 14.5 | 17.2 | 3.8 | 5.9 | 1.6 | 0.0 |
55 | 04-07-2021 | 16:25:30 | 6.8 | 7.8 | 9.9 | 4.3 | 8.0 | 8.8 | 14.0 |
56 | 06-07-2021 | 23:10:30 | 8.4 | 5.6 | 8.0 | 2.2 | 4.1 | 1.4 | 0.1 |
57 | 08-07-2021 | 21:40:30 | 10.7 | 9.4 | 9.6 | 5.5 | 7.4 | 11.0 | 15.5 |
58 | 14-07-2021 | 12:10:30 | 10.4 | 12.4 | 12.4 | 10.7 | 14.2 | 9.8 | 10.7 |
59 | 20-07-2021 | 07:25:30 | 10.6 | 13.8 | 13.1 | 5.4 | 18.6 | 20.3 | 25.8 |
60 | 31-07-2021 | 23:10:30 | 9.6 | 12.5 | 13.4 | 9.2 | 10.0 | 18.7 | 28.0 |
61 | 09-08-2021 | 03:25:30 | 9.4 | 22.4 | 20.0 | 13.2 | 15.6 | 46.0 | 64.2 |
62 | 29-08-2021 | 16:55:30 | 8.0 | 8.5 | 10.6 | 4.0 | 6.7 | 9.2 | 14.1 |
63 | 21-09-2021 | 07:55:30 | 10.4 | 21.1 | 19.5 | 14.4 | 16.3 | 37.7 | 53.0 |
64 | 23-10-2021 | 09:25:30 | 13.0 | 52.1 | 36.0 | 86.3 | 72.0 | 176.7 | 189.4 |
65 | 10-02-2022 | 21:25:30 | 11.5 | 33.8 | 23.6 | 41.8 | 41.2 | 128.4 | 89.4 |
66 | 21-02-2022 | 12:25:30 | 11.8 | 16.5 | 10.6 | 25.8 | 17.2 | 66.5 | 49.9 |
References
- Horwell, C.J.; Baxter, P.J. The Respiratory Health Hazards of Volcanic Ash: A Review for Volcanic Risk Mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Horwell, C.J.; Baxter, P.J.; Hillman, S.E.; Calkins, J.A.; Damby, D.E.; Delmelle, P.; Donaldson, K.; Dunster, C.; Fubini, B.; Kelly, F.J.; et al. Physicochemical and Toxicological Profiling of Ash from the 2010 and 2011 Eruptions of Eyjafjallajökull and Grímsvötn Volcanoes, Iceland Using a Rapid Respiratory Hazard Assessment Protocol. Environ. Res. 2013, 127, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thordarson, T. Atmospheric and Environmental Effects of the 1783–1784 Laki Eruption: A Review and Reassessment. J. Geophys. Res. 2003, 108, AAC-7. [Google Scholar] [CrossRef] [Green Version]
- Craig, H.; Wilson, T.; Stewart, C.; Outes, V.; Villarosa, G.; Baxter, P. Impacts to Agriculture and Critical Infrastructure in Argentina after Ashfall from the 2011 Eruption of the Cordón Caulle Volcanic Complex: An Assessment of Published Damage and Function Thresholds. J. Appl. Volcanol. 2016, 5, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.M.; Stewart, C.; Sword-Daniels, V.; Leonard, G.S.; Johnston, D.M.; Cole, J.W.; Wardman, J.; Wilson, G.; Barnard, S.T. Volcanic Ash Impacts on Critical Infrastructure. Phys. Chem. Earth Parts A/B/C 2012, 45–46, 5–23. [Google Scholar] [CrossRef]
- Blake, D.M.; Wilson, T.M.; Gomez, C. Road Marking Coverage by Volcanic Ash: An Experimental Approach. Environ. Earth Sci. 2016, 75, 1–12. [Google Scholar] [CrossRef]
- Robock, A. Volcanic Eruptions and Climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Grainger, R.G.; Highwood, E.J. Changes in Stratospheric Composition, Chemistry, Radiation and Climate Caused by Volcanic Eruptions. Spec. Publ. 2003, 213, 329–347. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Daniel, J.S.; Neely, R.R.; Vernier, J.-P.; Dutton, E.G.; Thomason, L.W. The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change. Science 2011, 333, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, A.E.; Robock, A.; Randel, W.J.; Deshler, T.; Rieger, L.A.; Lloyd, N.D.; Llewellyn, E.J. (Ted); Degenstein, D.A. Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport. Science 2012, 337, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall, T.J. The 1989–1990 Eruption of Redoubt Volcano, Alaska: Impacts on Aircraft Operations. J. Volcanol. Geotherm. Res. 1994, 62, 301–316. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Scaillet, B.; Martin, R.S. Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts. Rev. Mineral. Geochem. 2011, 73, 363–421. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, H. Excess Degassing from Volcanoes and Its Role on Eruptive and Intrusive Activity. Rev. Geophys. 2008, 46, RG4005. [Google Scholar] [CrossRef] [Green Version]
- De Beni, E.; Behncke, B.; Branca, S.; Nicolosi, I.; Carluccio, R.; D’Ajello Caracciolo, F.; Chiappini, M. The Continuing Story of Etna’s New Southeast Crater (2012–2014): Evolution and Volume Calculations Based on Field Surveys and Aerophotogrammetry. J. Volcanol. Geotherm. Res. 2015, 303, 175–186. [Google Scholar] [CrossRef]
- Corsaro, R.A.; Andronico, D.; Behncke, B.; Branca, S.; Caltabiano, T.; Ciancitto, F.; Cristaldi, A.; De Beni, E.; La Spina, A.; Lodato, L.; et al. Monitoring the December 2015 Summit Eruptions of Mt. Etna (Italy): Implications on Eruptive Dynamics. J. Volcanol. Geotherm. Res. 2017, 341, 53–69. [Google Scholar] [CrossRef]
- Edwards, M.J.; Pioli, L.; Andronico, D.; Scollo, S.; Ferrari, F.; Cristaldi, A. Shallow Factors Controlling the Explosivity of Basaltic Magmas: The 17–25 May 2016 Eruption of Etna Volcano (Italy). J. Volcanol. Geotherm. Res. 2018, 357, 425–436. [Google Scholar] [CrossRef]
- Laiolo, M.; Ripepe, M.; Cigolini, C.; Coppola, D.; Della Schiava, M.; Genco, R.; Innocenti, L.; Lacanna, G.; Marchetti, E.; Massimetti, F.; et al. Space- and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano. Remote Sens. 2019, 11, 1182. [Google Scholar] [CrossRef] [Green Version]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E.; et al. The VEI 2 Christmas 2018 Etna Eruption: A Small But Intense Eruptive Event or the Starting Phase of a Larger One? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Bonforte, A.; Guglielmino, F.; Puglisi, G. Large Dyke Intrusion and Small Eruption: The December 24, 2018 Mt. Etna Eruption Imaged by Sentinel-1 Data. Terra Nova 2019, 31, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near Real-Time Monitoring of the Christmas 2018 Etna Eruption Using SEVIRI and Products Validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Guerrieri, L.; Brenot, H.; Clarisse, L.; Merucci, L.; Pardini, F.; Prata, A.J.; Realmuto, V.J.; Stelitano, D.; Theys, N. Tropospheric Volcanic SO2 Mass and Flux Retrievals from Satellite. The Etna December 2018 Eruption. Remote Sens. 2021, 13, 2225. [Google Scholar] [CrossRef]
- Calvari, S.; Bonaccorso, A.; Ganci, G. Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode. Remote Sens. 2021, 13, 3052. [Google Scholar] [CrossRef]
- Calvari, S.; Nunnari, G. Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy. Remote Sens. 2022, 14, 2392. [Google Scholar] [CrossRef]
- Stelitano, D.; Corradini, S.; Merucci, L.; Guerrieri, L. WP3 Sviluppo di procedure automatiche per l’integrazione nelle sale operative di misure, modelli predittivi e prodotti di ricerca dell’INGV—Procedure automatiche per la rilevazione e la stima dei parametri delle nubi vulcaniche da satellite. Miscellanea INGV 2020, 57, 114–117. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Miller, T.P.; Casadevall, T.J. Volcanic ash hazards to aviation. In Encyclopedia of Volcanoes; Sigurdsson, H., Ed.; Academic Press: San Diego, California, CA, USA, 2000; pp. 915–930. ISBN 9780126431407. [Google Scholar]
- Prata, A.J. Satellite Detection of Hazardous Volcanic Clouds and the Risk to Global Air Traffic. Nat. Hazards 2009, 51, 303–324. [Google Scholar] [CrossRef]
- Prata, A.J.; Rose, W.I. Volcanic Ash Hazards to Aviation. In Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Chapter 52; pp. 2280–2335. [Google Scholar]
- Corradini, S.; Merucci, L.; Prata, A.J.; Piscini, A. Volcanic Ash and SO2 in the 2008 Kasatochi Eruption: Retrievals Comparison from Different IR Satellite Sensors. J. Geophys. Res. 2010, 115, D00L21. [Google Scholar] [CrossRef]
- Pugnaghi, S.; Guerrieri, L.; Corradini, S.; Merucci, L.; Arvani, B. A New Simplified Approach for Simultaneous Retrieval of SO2 and Ash Content of Tropospheric Volcanic Clouds: An Application to the Mt Etna Volcano. Atmos. Meas. Tech. 2013, 6, 1315–1327. [Google Scholar] [CrossRef] [Green Version]
- Degruyter, W.; Bonadonna, C. Improving on Mass Flow Rate Estimates of Volcanic Eruptions: MASS FLOW RATE VOLCANIC ERUPTIONS. Geophys. Res. Lett. 2012, 39, L16308. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Pistolesi, M.; Cioni, R.; Degruyter, W.; Elissondo, M.; Baumann, V. Dynamics of Wind-Affected Volcanic Plumes: The Example of the 2011 Cordón Caulle Eruption, Chile: The 2011 Cordón Caulle Eruption. J. Geophys. Res. Solid Earth 2015, 120, 2242–2261. [Google Scholar] [CrossRef] [Green Version]
- Devenish, B.J. Estimating the Total Mass Emitted by the Eruption of Eyjafjallajökull in 2010 Using Plume-Rise Models. J. Volcanol. Geotherm. Res. 2016, 326, 114–119. [Google Scholar] [CrossRef]
- Poret, M.; Corradini, S.; Merucci, L.; Costa, A.; Andronico, D.; Montopoli, M.; Vulpiani, G.; Freret-Lorgeril, V. Reconstructing Volcanic Plume Evolution Integrating Satellite and Ground-Based Data: Application to the 23 November 2013 Etna Eruption. Atmos. Chem. Phys. 2018, 18, 4695–4714. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J.; Grant, I.F. Retrieval of Microphysical and Morphological Properties of Volcanic Ash Plumes from Satellite Data: Application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Lombardo, V.; Merucci, L.; Musacchio, M.; Prestifilippo, M.; Scollo, S.; Silvestri, M.; Spata, G.; Stelitano, D. Proximal Monitoring of the 2011–2015 Etna Lava Fountains Using MSG-SEVIRI Data. Geosciences 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Guerrieri, L.; Merucci, L.; Corradini, S.; Pugnaghi, S. Evolution of the 2011 Mt. Etna Ash and SO2 Lava Fountain Episodes Using SEVIRI Data and VPR Retrieval Approach. J. Volcanol. Geotherm. Res. 2015, 291, 63–71. [Google Scholar] [CrossRef]
- Draxler, R.R. HYSPLIT4 User’s Guide. In NOAA Tech. Memo. ERL ARL-230; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 1999. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modelling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Merucci, L.; Zakšek, K.; Carboni, E.; Corradini, S. Stereoscopic Estimation of Volcanic Ash Cloud-Top Height from Two Geostationary Satellites. Remote Sens. 2016, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Pardini, F.; Burton, M.; De’ Michieli Vitturi, M.; Corradini, S.; Salerno, G.; Merucci, L.; Di Grazia, G. Retrieval and Intercomparison of Volcanic SO2 Injection Height and Eruption Time from Satellite Maps and Ground-Based Observations. J. Volcanol. Geotherm. Res. 2017, 331, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J. Observations of Volcanic Ash Clouds in the 10–12 μm Window Using AVHRR/2 Data. Int. J. Remote Sens. 1989, 10, 751–761. [Google Scholar] [CrossRef]
- Prata, A.J. Infrared Radiative Transfer Calculations for Volcanic Ash Clouds. Geophys. Res. Lett. 1989, 16, 1293–1296. [Google Scholar] [CrossRef]
- Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A. Comments on “Failures in Detecting Volcanic Ash from a Satellite-Based Technique. ” Remote Sens. Environ. 2001, 78, 341–346. [Google Scholar] [CrossRef]
- Corradini, S.M. Etna Tropospheric Ash Retrieval and Sensitivity Analysis Using Moderate Resolution Imaging Spectroradiometer Measurements. J. Appl. Remote Sens. 2008, 2, 023550. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared Optical Constants of Ammonium Sulfate, Sahara Dust, Volcanic Pumice, and Flyash. Appl. Opt. 1973, 12, 564. [Google Scholar] [CrossRef]
- Berk, A.; Cooley, T.W.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.J.; Adler-Golden, S.M.; Chetwynd, J.H.; et al. MODTRAN5: A Reformulated Atmospheric Band Model with Auxiliary Species and Practical Multiple Scattering Options; Comeron, A., Carleer, M.R., Picard, R.H., Sifakis, N.I., Eds.; Maspalomas: Canary Islands, Spain, 2004; p. 78. [Google Scholar]
- Pugnaghi, S.; Guerrieri, L.; Corradini, S.; Merucci, L. Real Time Retrieval of Volcanic Cloud Particles and SO2 by Satellite Using an Improved Simplified Approach. Atmos. Meas. Tech. 2016, 9, 3053–3062. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Merucci, L.; Prata, A.J. Retrieval of SO2 from Thermal Infrared Satellite Measurements: Correction Procedures for the Effects of Volcanic Ash. Atmos. Meas. Tech. 2009, 2, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.; Pugnaghi, S.; Piscini, A.; Guerrieri, L.; Merucci, L.; Picchiani, M.; Chini, M. Volcanic Ash and SO2 Retrievals Using Synthetic MODIS TIR Data: Comparison between Inversion Procedures and Sensitivity Analysis. Ann. Geophys. 2014, 57, 4. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef] [Green Version]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Theys, N.; Lerot, C.; Brenot, H.; van Gent, J.; De Smedt, I.; Clarisse, L.; Burton, M.; Varnam, M.; Hayer, C.; Esse, B.; et al. Improved Retrieval of SO 2 Plume Height from TROPOMI Using an Iterative Covariance-Based Retrieval Algorithm. Atmos. Meas. Tech. 2022, 15, 4801–4817. [Google Scholar] [CrossRef]
- Yu, T. Atmospheric Correction for Satellite-Based Volcanic Ash Mapping and Retrievals Using “Split Window” IR Data from GOES and AVHRR. J. Geophys. Res. 2002, 107, AAC-10. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A Long-Term Record of Blended Satellite and in Situ Sea-Surface Temperature for Climate Monitoring, Modelling and Environmental Studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Mastin, L.G.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, W.I.; et al. A Multidisciplinary Effort to Assign Realistic Source Parameters to Models of Volcanic Ash-Cloud Transport and Dispersion during Eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Zuccarello, F.; Calvari, S.; Cappello, A. A Multi-Sensor Satellite Approach to Characterize the Volcanic Deposits Emitted during Etna’s lava Fountaining: The 2020–2022 Study Case. Remote Sens. 2023, 15, 916. [Google Scholar] [CrossRef]
Date | Ash [Gg] | Ice [Gg] | SO2 [Gg] | |||
---|---|---|---|---|---|---|
VPR | LUTp | VPR | LUTp | VPR | LUTp | |
OP: 13-12-2020–21-02-2022 | 751 (12.7) | 773 (13.1) | 2291 (38.8) | 2272 (38.5) | 666 (11.3) | 518 (8.8) |
P1: 13-12-2020–19-03-2021 | 437 (21.8) | 413 (20.7) | 1539 (77.0) | 1413 (70.7) | 352 (17.6) | 226 (11.3) |
P2: 24-03-2021–17-06-2021 | 18 (1.2) | 42 (2.8) | 69 (4.6) | 91 (6.1) | 35 (2.3) | 48 (3.2) |
P3: 19-06-2021–21-02-2022 | 296 (12.3) | 317 (13.2) | 683 (28.4) | 768 (32.0) | 279 (11.6) | 244 (10.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrieri, L.; Corradini, S.; Theys, N.; Stelitano, D.; Merucci, L. Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison. Remote Sens. 2023, 15, 2055. https://doi.org/10.3390/rs15082055
Guerrieri L, Corradini S, Theys N, Stelitano D, Merucci L. Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison. Remote Sensing. 2023; 15(8):2055. https://doi.org/10.3390/rs15082055
Chicago/Turabian StyleGuerrieri, Lorenzo, Stefano Corradini, Nicolas Theys, Dario Stelitano, and Luca Merucci. 2023. "Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison" Remote Sensing 15, no. 8: 2055. https://doi.org/10.3390/rs15082055
APA StyleGuerrieri, L., Corradini, S., Theys, N., Stelitano, D., & Merucci, L. (2023). Volcanic Clouds Characterization of the 2020–2022 Sequence of Mt. Etna Lava Fountains Using MSG-SEVIRI and Products’ Cross-Comparison. Remote Sensing, 15(8), 2055. https://doi.org/10.3390/rs15082055