Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery
Abstract
:1. Introduction
2. Description of the Dataset
2.1. Study Area
2.2. RS Dataset
3. Method
3.1. RS Data Preprocessing
3.2. Semi-Automatic Green Tide Extraction Method
3.2.1. Green Tide Extraction Index
3.2.2. Land Mask
3.2.3. Threshold Selection
3.3. Semi-Automated Green Tide Extraction
3.4. Accuracy Assessment Method
3.5. Area Consistency Validation Method
3.6. Approximate Nonlinear Method
3.7. Uncertainty Estimate Method
3.8. Growth Curve Area Proportion Calculation Method
3.9. Kurtosis Coefficient
3.10. Identification of U. prolifera and Sargassum by RS
4. Results
4.1. Semi-Automated Green Tide Extraction
4.1.1. Characteristics of Different RS Data
4.1.2. Accuracy Assessment
Accuracy Assessment for Different RS Data
Accuracy Assessment for Different Environments
4.2. Area Consistency Validation Results
4.3. Green Tide Growth Curve
4.4. Green Tide Trend Forecast for 2022
5. Discussion
5.1. Green Tide Traceability
5.2. Green Tide Source Identification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Extraction result | Data determined as green tide pixels from RS images |
Accumulative cover area | The accumulation cover area of extraction result |
The NDVI statistic sample frequency | |
The equation for the second-order Gaussian fitted curve of NDVI values | |
True positive (TP) indicates the number of correctly classified green tide pixels | |
False negative (FN) indicates the number of green tide pixels that are misclassified as background | |
False positive (FP) represents the number of background pixels that are misclassified as green tide pixels | |
True negative (TN) indicates the number of correctly classified background pixels | |
Precision | The percentage of extracted green tide elements (all elements with a predicted value of 1) that are accurate |
The percentage of green tide elements (all elements with a true value of 1) extracted from the Defender | |
F1-score | Summed average of Precision and Recall |
Acc | The area consistency coefficient |
Coverage rate | The roughly distribution of green tide in the selected area |
The coordinates of the same value point (band 2) on the black dotted line . | |
The mean reflectance of band 2 (Green band) of each RS data | |
The difference between and () | |
Gaussian fitted curve formula for the first-order derivative of the growth curve | |
Fitting coefficient of determination of the growth curve | |
The percentile corresponding to the time of start and dissipation, i.e., the statistic related to the percentage of area integrated with time (days) | |
The integral area of the first derivative of the growth curve for day | |
The integral area of the first derivative of the growth curve for the whole year | |
The kurtosis coefficient of | |
The standard deviation of |
References
- Liu, D.; Keesing, J.K.; He, P.; Wang, Z.; Shi, Y.; Wang, Y. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Ye, N.-H.; Zhang, X.-W.; Mao, Y.-Z.; Liang, C.-W.; Xu, D.; Zou, J.; Zhuang, Z.-M.; Wang, Q.-Y. ‘Green tides’ are overwhelming the coastline of our blue planet: Taking the world’s largest example. Ecol. Res. 2011, 26, 477–485. [Google Scholar] [CrossRef]
- Qiao, F.; Wang, G.; Lü, X.; Dai, D. Drift characteristics of green macroalgae in the Yellow Sea in 2008 and 2010. Chin. Sci. Bull. 2011, 56, 2236–2242. [Google Scholar] [CrossRef]
- Li, Y.; Song, W.; Xiao, J.; Wang, Z.; Fu, M.; Zhu, M.; Li, R.; Zhang, X.; Wang, X. Tempo-spatial distribution and species diversity of green algae micro-propagules in the Yellow Sea during the large-scale green tide development. Harmful Algae 2014, 39, 40–47. [Google Scholar] [CrossRef]
- Zhou, M.-J.; Liu, D.-Y.; Anderson, D.M.; Valiela, I. Introduction to the Special Issue on green tides in the Yellow Sea. Estuar. Coast. Shelf Sci. 2015, 163, 3–8. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Li, H.; Li, G.; Liu, J.; Jiao, F.; Zhang, J.; Huo, Y.; Shi, X.; Su, R. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Natl. Sci. Rev. 2019, 6, 825–838. [Google Scholar] [CrossRef]
- Cao, H.; Han, L. Drift path of green tide and the impact of typhoon “Chan-hom” in the Chinese Yellow Sea based on GOCI images in 2015. Ecol. Inform. 2020, 60, 101156. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, J.; Huo, Y.; Zhou, L.; Wu, Q.; Chen, L.; Yu, K.; He, P. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity. Mar. Pollut. Bull. 2015, 101, 660–666. [Google Scholar] [CrossRef]
- Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Ocean. 2010, 115, C05017. [Google Scholar] [CrossRef]
- Hu, L.; Hu, C.; Ming-Xia, H. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 192, 217–227. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Shi, W.; Wang, M. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008. J. Geophys. Res. Ocean. 2009, 114, C12010. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, H.; Cheng, Y.; Zhang, S.; Zhang, W. Monitoring and tracking the green tide in the Yellow Sea with satellite imagery and trajectory model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5172–5181. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, M.; Gao, Z. A novel index to detect green-tide using UAV-based RGB imagery. Estuar. Coast. Shelf Sci. 2020, 245, 106943. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; Dong, Z.; Zhen, Y.; Di, B.; Shi, Y.; Fearns, P.; Shi, P. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar. Pollut. Bull. 2010, 60, 1423–1432. [Google Scholar] [CrossRef]
- Yuan, C.; Xiao, J.; Zhang, X.; Zhou, J.; Wang, Z. A new assessment of the algal biomass of green tide in the Yellow Sea. Mar. Pollut. Bull. 2022, 174, 113253. [Google Scholar] [CrossRef]
- Zhou, F.; Ge, J.; Liu, D.; Ding, P.; Chen, C.; Wei, X. The Lagrangian-based floating macroalgal growth and drift model (FMGDM v1. 0): Application to the Yellow Sea green tide. Geosci. Model Dev. 2021, 14, 6049–6070. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Wang, Y.; Zhang, H.; Li, F.; Zhang, Y. Distribution characteristics of green tides and its impact on environment in the Yellow Sea. Mar. Environ. Res. 2022, 181, 105756. [Google Scholar] [CrossRef]
- Jimenez-Perez, M.; Sánchez-Castillo, P.; Romera, O.; Fernandez-Moreno, D.; Pérez-Martınez, C. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym. Microb. Technol. 2004, 34, 392–398. [Google Scholar] [CrossRef]
- Banks, H.; Collins, E.; Flores, K.; Pershad, P.; Stemkovski, M.; Stephenson, L. Statistical error model comparison for logistic growth of green algae (Raphidocelis subcapitata). Appl. Math. Lett. 2017, 64, 213–222. [Google Scholar] [CrossRef]
- Li, D.; Gao, Z.; Song, D. Analysis of environmental factors affecting the large-scale long-term sequence of green tide outbreaks in the Yellow Sea. Estuar. Coast. Shelf Sci. 2021, 260, 107504. [Google Scholar] [CrossRef]
- Cui, T.-W.; Zhang, J.; Sun, L.-E.; Jia, Y.-J.; Zhao, W.; Wang, Z.-L.; Meng, J.-M. Satellite monitoring of massive green macroalgae bloom (GMB): Imaging ability comparison of multi-source data and drifting velocity estimation. Int. J. Remote Sens. 2012, 33, 5513–5527. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Y.; Fang, Z.; Cui, X.; Liang, J.; Song, X. Spatiotemporal patterns and morphological characteristics of Ulva prolifera distribution in the Yellow Sea, China in 2016–2018. Remote Sens. 2019, 11, 445. [Google Scholar] [CrossRef]
- Yu, T.; Xu, S.; Tao, B.; Shao, W. Coastline detection using optical and synthetic aperture radar images. Adv. Space Res. 2022, 70, 70–84. [Google Scholar] [CrossRef]
- Anbazhagan, S.; Paramasivam, C. Statistical correlation between land surface temperature (LST) and vegetation index (NDVI) using multi-temporal landsat TM data. Int. J. Adv. Earth Sci. Eng. 2016, 5, 333–346. [Google Scholar]
- Torres-Sánchez, J.; López-Granados, F.; Pena, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Bhandari, A.; Kumar, A.; Singh, G. Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city. Procedia Technol. 2012, 6, 612–621. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, M.; Wei, J.; He, Y.; Niu, L.; Li, H.; Xu, G. Adaptive threshold model in google earth engine: A case study of Ulva prolifera extraction in the south yellow sea, China. Remote Sens. 2021, 13, 3240. [Google Scholar] [CrossRef]
- Huang, X.; Weng, C.; Lu, Q.; Feng, T.; Zhang, L. Automatic labelling and selection of training samples for high-resolution remote sensing image classification over urban areas. Remote Sens. 2015, 7, 16024–16044. [Google Scholar] [CrossRef]
- Li, D.; Gao, Z.; Song, D.; Shang, W.; Jiang, X. Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing. Estuar. Coast. Shelf Sci. 2019, 227, 106335. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Y.; Wang, S.; Zhang, H.; Qiu, Z.; Mao, Z.; He, Y. Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102302. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C. To what extent can Ulva and Sargassum be detected and separated in satellite imagery? Harmful Algae 2021, 103, 102001. [Google Scholar] [CrossRef]
- Huo, Y.; Zhang, J.; Chen, L.; Hu, M.; Yu, K.; Chen, Q.; He, Q.; He, P. Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: Identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period. Limnol. Oceanogr. 2013, 58, 2206–2218. [Google Scholar] [CrossRef]
- Winsor, C.P. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1. [Google Scholar] [CrossRef]
- Nelder, J. The fitting of a generalization of the logistic curve. Biometrics 1961, 17, 89–110. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Wang, Z.; Zhang, Q.; Cai, X. Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China. Estuar. Coast. Shelf Sci. 2015, 163, 17–22. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Xue, H. Improved K-means clustering algorithm. Image Signal Process. 2008, 5, 169–172. [Google Scholar]
- Zhuang, M.; Liu, J.; Ding, X.; He, J.; Zhao, S.; Wu, L.; Gao, S.; Zhao, C.; Liu, D.; Zhang, J. Sargassum blooms in the East China Sea and Yellow Sea: Formation and management. Mar. Pollut. Bull. 2021, 162, 111845. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Guo, R.; Wu, L.; An, D.; Cong, M.; Qin, S.; Li, X. High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1815–1819. [Google Scholar] [CrossRef]
- Li, D.; Gao, Z.; Xu, F. Research on the dissipation of green tide and its influencing factors in the Yellow Sea based on Google Earth Engine. Mar. Pollut. Bull. 2021, 172, 112801. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Xing, Q.; Shang, S. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 2016, 58, 35–44. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, M.; Cui, Y.; Tian, L.; Yang, P.; Zhao, L.; Xue, M.; Liu, J. What causes the great green tide disaster in the South Yellow Sea of China in 2021? Ecol. Indic. 2022, 140, 108988. [Google Scholar] [CrossRef]
Predicted Value = 1 | Predicted Value = 0 | |
---|---|---|
True value = 1 | TP | FN |
True value = 0 | FP | TN |
Curve Model | Gompertz | Logistic |
---|---|---|
Formula | ||
Straightening of the curves | ||
The constant term |
Satellite | Time of Guardian Film | Resolution (m) | Number of Grids | Corresponding Area (km2) |
---|---|---|---|---|
GF-1 | 20 June 2021 | 16 | 562 × 562 | 80.86 |
Landsat | 23 June 2021 | 30 | 300 × 300 | 81.00 |
HJ-1 | 22 June 2021 | 30 | 300 × 300 | 81.00 |
HY-1C | 23 June 2021 | 50 | 180 × 180 | 81.00 |
MODIS | 23 June 2021 | 250 | 36 × 36 | 81.00 |
Satellite | Precision | Recall | F1-Score |
---|---|---|---|
GF-1 | 99.8% | 99.3% | 99.6% |
Landsat | 99.9% | 99.0% | 99.5% |
HJ-1 | 99.9% | 98.5% | 99.2% |
HY-1C | 99.9% | 98.3% | 99.1% |
MODIS | 98.6% | 96.6% | 97.6% |
Mean | 99.6% | 98.3% | 99.0% |
Zone | Serial Number | Corresponding RS Image | Location of the Images |
---|---|---|---|
A (Depth of ) | A1 | Landsat 8 (4 June 2020) | 121.17°–121.27°E, 35.65°–35.73°N |
A2 | Landsat 9 (25 June 2022) | 120.53°–120.63°E, 35.67°–35.75°N | |
A3 | Landsat 8 (23 June 2021) | 121.25°–121.35°E, 35.98°–36.06°N | |
B (Depth of ) | B1 | Landsat 8 (23 June 2021) | 121.68°–121.77°E, 34.95°–35.03°N |
B2 | Landsat 8 (23 June 2021) | 121.93°–122.03°E, 34.51°–34.59°N | |
B3 | Landsat 8 (2 June 2019) | 121.67°–121.77°E, 34.58°–34.66°N | |
C (Muddy water area) | C1 | Landsat 8 (22 May 2021) | 120.85°–120.94°E, 33.73°–33.81°N |
C2 | Landsat 8 (23 June 2021) | 121.30°–121.39°E, 33.98°–34.06°N | |
C3 (Think cloud) | Landsat 8 (24 May 2016) | 120.56°–120.66°E, 33.87°–33.95°N |
Zone | Serial Number | Precision | Recall | F1-Score | Coverage Rate |
---|---|---|---|---|---|
A (Depth of ) | A1 | 99.6% | 90.0% | 94.6% | 7.79% |
A2 | 99.8% | 96.5% | 98.1% | 10.4% | |
A3 | 99.9% | 99.0% | 99.5% | 18.9% | |
B (Depth of ) | B1 | 99.9% | 98.3% | 99.1% | 13.1% |
B2 | 99.9% | 98.4% | 99.1% | 29.6% | |
B3 | 99.9% | 94.6% | 97.2% | 8.59% | |
C (Muddy water area) | C1 | 99.9% | 84.2% | 91.4% | 5.70% |
C2 | 99.9% | 93.4% | 96.6% | 12.6% | |
C3 (Think cloud) | 99.8% | 69.5% | 82.0% | 5.67% |
Satellite | GF-1 | Landsat | HJ-1 | HY-1C | MODIS |
---|---|---|---|---|---|
GF-1 | 100% | 67.6% | 89.7% | 65.4% | 59.2% |
Landsat | 52.1% | 100% | 67.2% | 96.7% | 87.5% |
HJ-1 | 88.6% | 75.3% | 100% | 72.8% | 65.9% |
HY-1C | 47.1% | 96.6% | 62.7% | 100% | 90.5% |
MODIS | 31.0% | 85.7% | 48.3% | 89.5% | 100% |
Year | Start Time | Starting Percentile | Dissipation Time | Dissipation Percentile |
---|---|---|---|---|
2008 | May ★ | 0.832% | August ★ | 97.64% |
2009 | 24 March ★ | 0.000% | Late August ★ | 90.38% |
2010 | 20 April ★ | 0.000% | Mid-August ★ | 100.0% |
2011 | 27 May ★ | 0.000% | 21 August ★ | 100.0% |
2012 | Late March ★ | 0.000% | 30 August ★ | 100.0% |
2013 | Mid to late March ★ | 0.000% | Mid-August ★ | 99.98% |
2014 | 30 April 🟀 | 0.115% | 8 September 🟀 | 99.60% |
2015 | Mid-April ★ | 3.934% | 14 August 🟀 | 99.99% |
2016 | Mid-April ★ | 1.773% | 25 August 🟀 | 100.0% |
2017 | Mid-April ★ | 0.000% | 24 July 🟀 | 100.0% |
2018 | 4 May 🟀 | 0.000% | 11 August 🟀 | 100.0% |
2019 | Mid to late April ★ | 0.000% | 1 August 🟀 | 100.0% |
2020 | 19 March 🟀 | 4.767% | 20 July 🟀 | 88.92% |
2021 | Mid-April ★ | 1.085% | Late August ★ | 97.28% |
High-Resolution RS Data Source | In-Orbit Operation Time |
---|---|
Landsat5 | March 1984–June 2013 |
HJ-1 | September 2008–Present |
Landsat8 | February 2013–Present |
GF-1 | April 2013–Present |
HY-1C | September 2018–Present |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Yu, T.; Xu, J.; Pan, X.; Shao, W.; Zuo, J.; Yu, Y. Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery. Remote Sens. 2023, 15, 2196. https://doi.org/10.3390/rs15082196
Xu S, Yu T, Xu J, Pan X, Shao W, Zuo J, Yu Y. Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery. Remote Sensing. 2023; 15(8):2196. https://doi.org/10.3390/rs15082196
Chicago/Turabian StyleXu, Shuwen, Tan Yu, Jinmeng Xu, Xishan Pan, Weizeng Shao, Juncheng Zuo, and Yang Yu. 2023. "Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery" Remote Sensing 15, no. 8: 2196. https://doi.org/10.3390/rs15082196
APA StyleXu, S., Yu, T., Xu, J., Pan, X., Shao, W., Zuo, J., & Yu, Y. (2023). Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery. Remote Sensing, 15(8), 2196. https://doi.org/10.3390/rs15082196