Analysis of the Characteristics and Causes of Land Degradation and Development in Coastal China (1982–2015)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. Land Degradation and Development Index (LDDI)
2.3.2. Trend and Change-Point Detection Methods
2.3.3. Residual Trend Analysis and Corresponding Quantitative Analysis
2.3.4. Indices of Climatic Extremes
2.3.5. Land Transition Change
3. Results
3.1. Spatial Patterns and Long-Term Trends for LDD and Climate
3.2. Links between LDDI, Climatic, and Anthropogenic Factors
3.3. Contribution of Human Activities and Climate Change to LDD
4. Discussion
4.1. Impacts of Climate Factors on the LDD Processes
4.2. Impacts of Human Activities on the LDD Processes
4.3. Limitations and Future Work
5. Conclusions
- (1)
- During the study period, the primary LDD process observed in China’s coastal region was land development, with 62.47% of the area exhibiting significant changes in land development trends. In contrast, land degradation processes were observed in only 7.03% of the region, mainly concentrated in the YRD, north of TW, PRD, and northeast LN.
- (2)
- Compared to climate change factors, human activities have a stronger impact on the changes in the LDD process. During the study period, the contribution of human activities to the LDD process became increasingly evident, with their contribution to LDD changes exceeding 60% in most regions. About 25.76% of the study area was significantly impacted by human activities, with approximately 21.61% of the land mainly affected by land development. In comparison, land degradation accounted for only 4.15% of the total area, fragmented and distributed in the PRD, YRD, and northeastern LN.
- (3)
- In most land types, land development dominates the LDD process, with land development areas of croplands, forests, and impervious regions accounting for 63.21% of the total study area. Significant expansion trends (p < 0.01) were observed in impervious, water, and forest regions within the study region, while wetlands, shrubs, grasslands, barren land, and croplands showed significant decreases (p < 0.01). Over the past few decades, China’s coastal region has experienced rapid urbanization, significantly converting arable land into construction land. Between 1985 and 2015, cropland area decreased by 13.2% (7.81 million ha), primarily converting into impervious and forest land. Notably, 91.31% of the converted impervious land originated from cropland.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chappell, A.; Baldock, J.; Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 2016, 6, 187–191. [Google Scholar] [CrossRef]
- Pacheco, F.-A.-L.; Fernandes, L.-F.-S.; Junior, R.-F.-V.; Valera, C.-A.; Pissarra, T.-C.-T. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Bastin, J.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.-M.; Crowther, T.-W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Hermans, K.; McLeman, R. Climate change, drought, land degradation and migration: Exploring the linkages. Curr. Opin. Environ. Sustain. 2021, 50, 236–244. [Google Scholar] [CrossRef]
- Kust, G.; Andreeva, O.; Cowie, A. Land Degradation Neutrality: Concept development, practical applications and assessment. J. Environ. Manag. 2017, 195, 16–24. [Google Scholar] [CrossRef]
- Brevik, E.-C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.-N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef]
- Parras Alcántara, L.; Díaz Jaimes, L.; Lozano García, B. Management effects on soil organic carbon stock in Mediterranean open rangelands—Treeless grasslands. Land Degrad. Dev. 2015, 26, 22–34. [Google Scholar] [CrossRef]
- Reeves, M.-C.; Baggett, L.-S. A remote sensing protocol for identifying rangelands with degraded productive capacity. Ecol. Indic. 2014, 43, 172–182. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.-Y.; Gao, W.-T.; Zhang, Y.-Y.; Gao, Z.-H.; Song, Z.-L.; Qin, P.-Y.; Tian, X. Identification and assessment of the factors driving vegetation degradation/regeneration in drylands using synthetic high spatiotemporal remote sensing Data—A case study in Zhenglanqi, Inner Mongolia, China. Ecol. Indic. 2019, 107, 105614. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.-F.; Chen, B.-Z.; Zhang, H.-R.; Innes, J.-L.; Wang, G.-Y.; Yan, J.-W.; Zheng, Y.-H.; Zhu, Z.-C.; Myneni, R.-B. Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Lei, H.-M. Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sens. 2015, 7, 10243–10268. [Google Scholar] [CrossRef]
- Kang, J.-F.; Zhang, Y.-N.; Biswas, A. Land Degradation and Development Processes and Their Response to Climate Change and Human Activity in China from 1982 to 2015. Remote Sens. 2021, 13, 3516. [Google Scholar] [CrossRef]
- Li, H.; Yang, X.-H.; Zhang, K.-B. Understanding global land degradation processes interacted with complex biophysics and socioeconomics from the perspective of the Normalized Difference Vegetation Index (1982–2015). Glob. Planet. Change 2021, 198, 103431. [Google Scholar] [CrossRef]
- Cohen, J.-E.; Small, C.; Mellinger, A.; Gallup, J.; Sachs, J. Estimates of coastal populations. Science 1997, 278, 1209–1213. [Google Scholar] [CrossRef]
- de Andrade, M.-M.-N.; Szlafsztein, C.-F.; Souza-Filho, P.-W.-M.; Dos Reis Araújo, A.; Gomes, M.-K.-T. A socioeconomic and natural vulnerability index for oil spills in an Amazonian harbor: A case study using GIS and remote sensing. J. Environ. Manag. 2010, 91, 1972–1980. [Google Scholar] [CrossRef]
- Davidson, N.-C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Kirwan, M.-L.; Megonigal, J.-P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.-A.; Pongratz, J.; Nabel, J.-E.-M.-S.; Mueller, N.-D.; Jackson, R.-B.; Davis, S.-J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef]
- Ibrahim, Y.-Z.; Balzter, H.; Kaduk, J.; Tucker, C.-J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.-N.; Li, W.-H.; Deng, H.-J.; Fang, G.-H. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- He, Q.; Bertness, M.-D.; Bruno, J.-F.; Li, B.; Chen, G.; Coverdale, T.-C.; Altieri, A.-H.; Bai, J.; Sun, T.; Pennings, S.-C. Economic development and coastal ecosystem change in China. Sci. Rep. 2014, 4, 5995. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-B.; Hou, X.-Y.; Li, X.-W.; Song, B.-Y.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indic. 2020, 111, 106004. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.-T.; Yang, Z.-Q.; Zhou, Y.-X. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- Xu, N.; Gao, Z.-Q.; Ning, J.-C. Analysis of the characteristics and causes of coastline variation in the Bohai Rim (1980–2010). Environ. Earth Sci. 2016, 75, 719. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.-Q.; Su, J.-L. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Li, Y.-F.; Shi, Y.-L.; Zhu, X.-D.; Cao, H.-H.; Yu, T. Coastal wetland loss and environmental change due to rapid urban expansion in Lianyungang, Jiangsu, China. Reg. Environ. Change 2014, 14, 1175–1188. [Google Scholar] [CrossRef]
- Li, Y.-H.; Li, Y.-R.; Westlund, H.; Liu, Y.-S. Urban–rural transformation in relation to cultivated land conversion in China: Implications for optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [Google Scholar] [CrossRef]
- He, C.-Y.; Tian, J.; Gao, B.; Zhao, Y.-Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.-D.; Muñoz-Marí, J.; García-Haro, F.-J.; Guanter, L. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, c7447. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.-B.; Berry, J.-A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef]
- Sur, K.; Chauhan, P. Dynamic trend of land degradation/restoration along Indira Gandhi Canal command area in Jaisalmer District, Rajasthan, India: A case study. Environ. Earth Sci. 2019, 78, 472. [Google Scholar] [CrossRef]
- Wang, X.-G.; Yan, F.-Q.; Su, F.-Z. Changes in coastline and coastal reclamation in the three most developed areas of China, 1980–2018. Ocean Coast. Manag. 2021, 204, 105542. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. China Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016. (In Chinese)
- Huang, C.-C.; Zhang, M.-L.; Zou, J.; Zhu, A.-X.; Chen, X.; Mi, Y.; Wang, Y.-H.; Yang, H.; Li, Y.-M. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Sci. Total Environ. 2015, 536, 173–181. [Google Scholar] [CrossRef]
- Yirsaw, E.; Wu, W.; Temesgen, H.; Bekele, B. Effect of temporal land use/land cover changes on ecosystem services value in coastal area of China: The case of Su-Xi-Chang region. Appl. Ecol. Environ. Res. 2016, 14, 409–422. [Google Scholar] [CrossRef]
- Meng, W.-Q.; Hu, B.-B.; He, M.-X.; Liu, B.-Q.; Mo, X.-Q.; Li, H.-Y.; Wang, Z.-L.; Zhang, Y. Temporal-spatial variations and driving factors analysis of coastal reclamation in China. Estuar. Coast. Shelf Sci. 2017, 191, 39–49. [Google Scholar] [CrossRef]
- Tucker, C.-J.; Pinzon, J.-E.; Brown, M.-E.; Slayback, D.-A.; Pak, E.-W.; Mahoney, R.; Vermote, E.-F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Yuan, W.-P.; Liu, S.-G.; Yu, G.-R.; Bonnefond, J.; Chen, J.-Q.; Davis, K.; Desai, A.-R.; Goldstein, A.-H.; Gianelle, D.; Rossi, F. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Peng, S.-Z.; Ding, Y.-X.; Wen, Z.-M.; Chen, Y.-M.; Cao, Y.; Ren, J.-Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.-J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. (In Chinese) [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Mesquita, D.-P.; Gomes, J.-P.; Junior, A.-H.-S.; Nobre, J.-S. Euclidean distance estimation in incomplete datasets. Neurocomputing 2017, 248, 11–18. [Google Scholar] [CrossRef]
- Alexander, L.-V.; Zhang, X.; Peterson, T.-C.; Caesar, J.; Gleason, B.; Klein Tank, A.-M.-G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef]
- Capra, A.; Consoli, S.; Scicolone, B. Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters. Water Resour. Manag. 2013, 27, 601–617. [Google Scholar] [CrossRef]
- Sen, P.-K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Jiang, W.-G.; Yuan, L.-H.; Wang, W.-J.; Cao, R.; Zhang, Y.-F.; Shen, W.-M. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Zhao, K.-G.; Wulder, M.-A.; Hu, T.-X.; Bright, R.; Wu, Q.-S.; Qin, H.-M.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.-S. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Li, Y.; Hu, T.; Zhang, X.; Zhao, K.; Dongarra, J.; Moler, C. Rbeast: Bayesian Change-Point Detection and Time Series Decomposition, R Package Version 0.9.7. 2023. Available online: https://cran.r-project.org/web/packages/Rbeast/Rbeast.pdf (accessed on 22 January 2023).
- Tian, H.-J.; Cao, C.-X.; Chen, W.; Bao, S.-N.; Yang, B.; Myneni, R.-B. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 2015, 82, 276–289. [Google Scholar] [CrossRef]
- Sun, W.-Y.; Song, X.-Y.; Mu, X.-M.; Gao, P.; Wang, F.; Zhao, G.-J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Ali, S.; Eum, H.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.-L.; Hwang, S.; Nasim, W.; Khan, I.-A. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Coppola, E.; Nogherotto, R.; Ciarlo, J.-M.; Giorgi, F.; van Meijgaard, E.; Kadygrov, N.; Iles, C.; Corre, L.; Sandstad, M.; Somot, S. Assessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensemble. J. Geophys. Res.-Atmos. 2021, 126, e2019JD032356. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett. 2021, 16, 24013. [Google Scholar] [CrossRef]
- Sang, X.; Guo, Q.-Z.; Wu, X.-X.; Fu, Y.; Xie, T.-Y.; He, C.-W.; Zang, J.-L. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep. 2019, 9, 12279. [Google Scholar] [CrossRef]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; Ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.-G. Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2018. [Google Scholar]
- Shukla, P.-R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.-C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Zhao, A.-Z.; Zhang, A.-B.; Liu, J.-H.; Feng, L.-L.; Zhao, Y.-L. Assessing the effects of drought and “Grain for Green” Program on vegetation dynamics in China’s Loess Plateau from 2000 to 2014. Catena 2019, 175, 446–455. [Google Scholar] [CrossRef]
- Green, J.-K.; Seneviratne, S.-I.; Berg, A.-M.; Findell, K.-L.; Hagemann, S.; Lawrence, D.-M.; Gentine, P. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 2019, 565, 476–479. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.-A.; Panagos, P.; Lugato, E.; Yang, J.-E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Li, J.-Y.; Ma, X.-F.; Zhang, C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Sci. Total Environ. 2020, 709, 136060. [Google Scholar] [CrossRef]
- Sulaeman, D.; Westhoff, T. The Causes and Effects of Soil Erosion, and How to Prevent It. 2020. Available online: https://www.wri.org/insights/causes-and-effects-soil-erosion-and-how-prevent-it (accessed on 7 February 2020).
- Singh, B.-P.; Cowie, A.-L.; Chan, K.-Y. Soil Health and Climate Change; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Burgers, A. Soil Biology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Nadeem, H.; Ahmad, F. Soil-Plant and Microbial Interaction in Improving Salt Stress; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zurqani, H.-A.; Mikhailova, E.-A.; Post, C.-J.; Schlautman, M.-A.; Elhawej, A.-R. A review of Libyan soil databases for use within an ecosystem services framework. Land 2019, 8, 82. [Google Scholar] [CrossRef]
- Corwin, D.-L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 2, 842–862. [Google Scholar] [CrossRef]
- Vlek, P.; Khamzina, A.; Tamene, L. Land Degradation and the Sustainable Development Goals: Threats and Potential Remedies; International Center for Tropical Agriculture (CIAT): Nairobi, Kenya, 2017. [Google Scholar]
- Long, H.-L.; Liu, Y.-S. Rural restructuring in China. J. Rural Stud. 2016, 47, 387–391. [Google Scholar] [CrossRef]
- China National Bureau of Statistics. China Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019. (In Chinese)
- Zhou, D.; Xu, J.-C.; Lin, Z.-L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Li, K.-M.; Feng, M.-M.; Biswas, A.; Su, H.-H.; Niu, Y.-L.; Cao, J.-J. Driving factors and future prediction of land use and cover change based on satellite remote sensing data by the LCM model: A case study from Gansu province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-M.; Cao, J.-J.; Adamowski, J.-F.; Biswas, A.; Zhou, J.-J.; Liu, Y.-J.; Zhang, Y.-K.; Liu, C.-F.; Dong, X.-G.; Qin, Y.-L. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Bryan, B.-A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.-D.; Crossman, N.-D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-C.; Li, J.-F.; Weng, Q.-H.; Zheng, Q.-M.; Li, L.; Dai, S.; Guo, B.-Y. Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Sci. Total Environ. 2019, 666, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Z.-Y.; Zhang, J.-J.; Wu, X.; Jia, M.; Wu, L. Built-up land expansion and its impacts on optimizing green infrastructure networks in a resource-dependent city. Sustain. Cities Soc. 2020, 55, 102026. [Google Scholar] [CrossRef]
- Li, C.-L.; Liu, M.; Hu, Y.-M.; Zhou, R.; Wu, W.; Huang, N. Evaluating the runoff storage supply-demand structure of green infrastructure for urban flood management. J. Clean. Prod. 2021, 280, 124420. [Google Scholar] [CrossRef]
Slope (LDDIobs) a | Driving Factors | Standard of Calculation | Contribution Rate | ||
---|---|---|---|---|---|
Slope (LDDICC) b | Slope (LDDIHA) c | Climate (CC) | Human (HA) | ||
>0 | CC&HA | >0 | >0 | ||
CC | >0 | <0 | 100 | 0 | |
HA | <0 | >0 | 0 | 100 | |
<0 | CC&HA | <0 | <0 | ||
CC | <0 | >0 | 100 | 0 | |
HA | >0 | <0 | 0 | 100 |
ID | Index | Definition | Unit |
---|---|---|---|
1 | FD a | Annual count when TN(daily minimum) < 0 °C | days |
2 | SU25 a | Annual count when TX(daily maximum) > 25 °C | days |
3 | TR20 a | Annual count when TN(daily minimum) > 20 °C | days |
4 | TXx a | Monthly maximum value of daily maximum temperature | °C |
5 | TNx a | Monthly maximum value of daily minimum temperature | °C |
6 | TXn a | Monthly minimum value of daily maximum temperature | °C |
7 | TNn a | Monthly minimum value of daily minimum temperature | °C |
8 | TN10p a | Percentage of days when TN < 10th percentile | days |
9 | TX10p a | Percentage of days when TX < 10th percentile | days |
10 | TN90p a | Percentage of days when TN > 90th percentile | days |
11 | TX90p a | Percentage of days when TX > 90th percentile | days |
12 | WSDI a | Annual count of days with at least 6 consecutive days when TX > 90th percentile | days |
13 | CSDI a | Annual count of days with at least 6 consecutive days when TN < 10th percentileFD | days |
14 | DTR a | Monthly mean difference between TX and TN | °C |
15 | RX1day b | Monthly maximum 1-day precipitation | mm |
16 | Rx5day b | Monthly maximum consecutive 5-day precipitation | mm |
17 | SDII b | Annual total precipitation divided by the number of wet days (defined as PRCP ≥ 1.0 mm) in the year | mm/day |
18 | R10 b | Annual count of days when PRCP ≥ 10 mm | days |
19 | R20 b | Annual count of days when PRCP ≥ 20 mm | days |
20 | CDD b | Maximum number of consecutive days with RR < 1 mm | days |
21 | CWD b | Maximum number of consecutive days with RR ≥ 1 mm | days |
22 | R95p b | Annual total PRCP when RR > 95th percentile | mm |
23 | R99p b | Annual total PRCP when RR > 99th percentile | mm |
24 | PRCPTOT b | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, G.; Zhao, Y.; Yang, J.; Li, Y. Analysis of the Characteristics and Causes of Land Degradation and Development in Coastal China (1982–2015). Remote Sens. 2023, 15, 2249. https://doi.org/10.3390/rs15092249
Huang Y, Li G, Zhao Y, Yang J, Li Y. Analysis of the Characteristics and Causes of Land Degradation and Development in Coastal China (1982–2015). Remote Sensing. 2023; 15(9):2249. https://doi.org/10.3390/rs15092249
Chicago/Turabian StyleHuang, Ya, Guiping Li, Yong Zhao, Jing Yang, and Yanping Li. 2023. "Analysis of the Characteristics and Causes of Land Degradation and Development in Coastal China (1982–2015)" Remote Sensing 15, no. 9: 2249. https://doi.org/10.3390/rs15092249
APA StyleHuang, Y., Li, G., Zhao, Y., Yang, J., & Li, Y. (2023). Analysis of the Characteristics and Causes of Land Degradation and Development in Coastal China (1982–2015). Remote Sensing, 15(9), 2249. https://doi.org/10.3390/rs15092249