Different Characteristics and Drivers of the Extraordinary Pakistan Rainfall in July and August 2022
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. General Characteristics of Rainfall in Pakistan
3.2. Extremity and Particularity of the Precipitation in July and August 2022
3.3. Favorable Large-Scale Atmospheric Circulations Associated with Extreme Precipitation in July and August 2022
3.4. Possible Causes of the Anomalous Atmospheric Circulation in July and August 2022
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Loughlin, J.; Linke, A.M.; Witmer, F.D. Effects of temperature and precipitation variability on the risk of violence in sub-Saharan Africa, 1980–2012. Proc. Natl. Acad. Sci. USA 2014, 111, 16712–16717. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Special Report of the Intergovernmental Panel on Climate Change)||Changes in Climate Extremes and Their Impacts on the Natural Physical Environment; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar] [CrossRef]
- Rowhani, P.; Lobell, D.B.; Linderman, M.; Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 2011, 151, 449–460. [Google Scholar] [CrossRef]
- Irshad, M.S. One belt and one road: Dose China-Pakistan economic corridor benefit for Pakistan’s economy? J. Econ. Sustain. Dev. 2015, 6. [Google Scholar] [CrossRef]
- Ahmar, M. Strategic meaning of the China-Pakistan economic corridor. Strateg. Stud. 2014, 34, 35–49. [Google Scholar]
- Shaw, R. Floods in the Hindu Kush Region: Causes and socio-economic aspects. In Mountain Hazards and Disaster Risk Reduction; Springer: Tokyo, Japan, 2015; pp. 33–52. [Google Scholar]
- Houze, R.A., Jr. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, 1–47. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.-M. The 2010 Pakistan Flood and the Russia Heat Wave: Teleconnection of Extremes. J. Hydrometeorol. 2010, 13, 392–403. [Google Scholar] [CrossRef]
- Bibi, A.; Ullah, K.; Yushu, Z.; Wang, Z.; Gao, S. Role of westerly jet in torrential rainfall during monsoon over Northern Pakistan. Earth Space Sci. 2020, 7, e2019EA001022. [Google Scholar] [CrossRef]
- Viterbo, F.; von Hardenberg, J.; Provenzale, A.; Molini, L.; Parodi, A.; Sy, O.O.; Tanelli, S. High-resolution simulations of the 2010 Pakistan flood event: Sensitivity to parameterizations and initialization time. J. Hydrometeorol. 2016, 17, 1147–1167. [Google Scholar] [CrossRef]
- Bhutto. The West Is Ignoring Pakistan’s Super-Floods. Heed This Warning: Tomorrow It Will Be You. Available online: https://www.theguardian.com/commentisfree/2022/sep/08/pakistan-floods-climate-crisis (accessed on 21 April 2023).
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Duan, A.; Hua, W.; Ullah, K.; Liu, S. Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan. Clim. Dyn. 2019, 52, 6121–6130. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Fiifi Tawia Hagan, D.; Kwesi Nooni, I.; Lou, D.; Ullah, I. Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef]
- Hussain, M.S.; Lee, S. The regional and the seasonal variability of extreme precipitation trends in Pakistan. Asia-Pac. J. Atmos. Sci. 2013, 49, 421–441. [Google Scholar] [CrossRef]
- Zahid, M.; Rasul, G. Frequency of extreme temperature and precipitation events in Pakistan 1965–2009. Sci. Int. 2011, 23, 313–319. [Google Scholar]
- Ali, G.; Sajjad, M.; Kanwal, S.; Xiao, T.; Khalid, S.; Shoaib, F.; Gul, H.N. Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep. 2021, 11, 6935. [Google Scholar] [CrossRef] [PubMed]
- Martius, O.; Sodemann, H.; Joos, H.; Pfahl, S.; Winschall, A.; Croci-Maspoli, M.; Graf, M.; Madonna, E.; Mueller, B.; Schemm, S.; et al. The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Q. J. R. Meteorol. Soc. 2013, 139, 1780–1797. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Li, T.; Chen, W.; Ding, Y. Projections of South Asian Summer Monsoon under Global Warming from 1.5 to 5 °C. J. Clim. 2021, 34, 7913–7926. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Krishnamurthy, V. Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Clim. Dyn. 2014, 42, 2397–2410. [Google Scholar] [CrossRef]
- Liu, B.; Wu, G.; Ren, R. Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon. Clim. Dyn. 2015, 45, 1859–1875. [Google Scholar] [CrossRef]
- Ullah, W.; Guojie, W.; Gao, Z.; Tawia Hagan, D.F.; Bhatti, A.S.; Zhua, C. Observed linkage between Tibetan Plateau soil moisture and South Asian summer precipitation and the possible mechanism. J. Clim. 2021, 34, 361–377. [Google Scholar] [CrossRef]
- Priya, P.; Mujumdar, M.; Sabin, T.P.; Terray, P.; Krishnan, R. Impacts of Indo-Pacific Sea Surface Temperature Anomalies on the Summer Monsoon Circulation and Heavy Precipitation over Northwest India–Pakistan Region during 2010. J. Clim. 2015, 28, 3714–3730. [Google Scholar] [CrossRef]
- Latif, M.; Hannachi, A.; Syed, F. Analysis of rainfall trends over Indo-Pakistan summer monsoon and related dynamics based on CMIP5 climate model simulations. Int. J. Climatol. 2018, 38, e577–e595. [Google Scholar] [CrossRef]
- Ahasan, M.; Khan, A. Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan using WRF-ARW model. Nat. Hazards 2013, 69, 351–363. [Google Scholar] [CrossRef]
- Nanditha, J.; Kushwaha, A.P.; Singh, R.; Malik, I.; Solanki, H.; Chupal, D.S.; Dangar, S.; Mahto, S.S.; Mishra, V.; Vegad, U. The Pakistan flood of August 2022: Causes and implications. Earth's Future 2023, 11, e2022EF003230. [Google Scholar] [CrossRef]
- Devi, S. Pakistan floods: Impact on food security and health systems. Lancet 2022, 400, 799–800. [Google Scholar] [CrossRef]
- He, C.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W. Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau. Clim. Dyn. 2023, 1–17. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, H.; Yang, S. Different mechanisms for the extremely hot central-eastern China in July–August 2022 from a Eurasian large-scale circulation perspective. Environ. Res. Lett. 2023, 18, 024023. [Google Scholar] [CrossRef]
- Rajesh, P.; Goswami, B. Four-dimensional structure and sub-seasonal regulation of the Indian summer monsoon multi-decadal mode. Clim. Dyn. 2020, 55, 2645–2666. [Google Scholar] [CrossRef]
- Jayakumar, A.; Turner, A.; Johnson, S.; Rajagopal, E.; Mohandas, S.; Mitra, A. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model. Clim. Dyn. 2017, 49, 2035–2059. [Google Scholar] [CrossRef]
- Liu, B.; Yan, Y.; Zhu, C.; Ma, S.; Li, J. Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett. 2020, 47, e2020GL090342. [Google Scholar] [CrossRef]
- Wang, B.; Fan, Z. Choice of South Asian summer monsoon indices. Bull. Am. Meteorol. Soc. 1999, 80, 629–638. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Lau, K. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Yasui, S.; Watanabe, M. Forcing Processes of the Summertime Circumglobal Teleconnection Pattern in a Dry AGCM. J. Clim. 2010, 23, 2093–2114. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.-M. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes. J. Hydrometeorol. 2012, 13, 392–403. [Google Scholar] [CrossRef]
- Hong, C.-C.; Hsu, H.-H.; Lin, N.-H.; Chiu, H. Roles of European blocking and tropical-extratropical interaction in the 2010 Pakistan flooding. Geophys. Res. Lett. 2011, 38, L13806. [Google Scholar] [CrossRef]
- Wu, G.; Liu, B. Roles of forced and inertially unstable convection development in the onset process of Indian summer monsoon. Sci. China Earth Sci. 2014, 57, 1438–1451. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, L.J.; Yuan, Y.; Zuo, J.; Ke, Z. Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022? Environ. Res. Lett. 2023, 18, 034014. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Almazroui, M.; Yousef, A.; Tippett, M.K.; Kucharski, F.; Alkhalaf, A.A. Sensitivity of AGCM-simulated regional JJAS precipitation to different convective parameterization schemes. Int. J. Climatol. 2017, 37, 4594–4609. [Google Scholar] [CrossRef]
- Kumar, A.; Sarthi, P.P.; Kumari, A.; Sinha, A.K. Observed characteristics of rainfall indices and outgoing longwave radiation over the Gangetic plain of India. Pure Appl. Geophys. 2021, 178, 619–631. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Clim. 1998, 11, 137–164. [Google Scholar] [CrossRef]
- Kazi, S. Climatic regions of west Pakistan. Pak. Geogr. Rev. 1951, 6, 1–22. [Google Scholar]
- Kripalani, R.; Kulkarni, A.; Singh, S. Association of the Indian summer monsoon with the Northern Hemisphere mid-latitude circulation. Int. J. Climatol. A J. R. Meteorol. Soc. 1997, 17, 1055–1067. [Google Scholar] [CrossRef]
- Rasmussen, K.; Hill, A.; Toma, V.; Zuluaga, M.; Webster, P.; Houze, R., Jr. Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Q. J. R. Meteorol. Soc. 2015, 141, 1259–1276. [Google Scholar] [CrossRef]
- Matsueda, M. Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett. 2011, 38, L06801. [Google Scholar] [CrossRef]
- Galarneau, T.J.; Hamill, T.M.; Dole, R.M.; Perlwitz, J. A Multiscale Analysis of the Extreme Weather Events over Western Russia and Northern Pakistan during July 2010. Mon. Weather Rev. 2012, 140, 1639–1664. [Google Scholar] [CrossRef]
- Croci-Maspoli, M.; Schwierz, C.; Davies, H.C. Atmospheric blocking: Space-time links to the NAO and PNA. Clim. Dyn. 2007, 29, 713–725. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Syed, F.; Giorgi, F.; Pal, J.; King, M. Effect of remote forcings on the winter precipitation of central southwest Asia part 1: Observations. Theor. Appl. Climatol. 2006, 86, 147–160. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, D.; Dai, A.; Feldstein, S.B. The Positive North Atlantic Oscillation with Downstream Blocking and Middle East Snowstorms: Impacts of the North Atlantic Jet. J. Clim. 2016, 29, 1853–1876. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, A.; Wang, X. Joint effect of the Indian Ocean Dipole and the Silk Road Pattern on Indian rainfall during summer to autumn transition. Atmos. Res. 2023, 283, 106589. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Wang, C. How essential of the balance between large and small scale features to reproduce precipitation during a sudden sharp turn from drought to flood. Clim. Dyn. 2019, 52, 5013–5029. [Google Scholar] [CrossRef]
- Gan, R.; Yang, Y.; Ma, Y. Modelling the impacts of the Pacific Ocean sea surface temperature anomalies on a drought event in southwestern China with a piecewise-integration method. Int. J. Climatol. 2019, 39, 799–813. [Google Scholar] [CrossRef]
- Ajayamohan, R.S.; Rao, S.A.; Yamagata, T. Influence of Indian Ocean Dipole on Poleward Propagation of Boreal Summer Intraseasonal Oscillations. J. Clim. 2008, 21, 5437–5454. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Z.; Xie, Q.; Meng, X.; Zhao, L.; Dong, W. Convection-permitting modeling over the Tibetan Plateau improves the simulation of Meiyu Rainfall during the 2011 Yangtze Plain flood. Atmos. Res. 2022, 265, 105907. [Google Scholar] [CrossRef]
- Van der Schrier, G.; Rasmijn, L.; Barkmeijer, J.; Sterl, A.; Hazeleger, W. The 2010 Pakistan floods in a future climate. Clim. Chang. 2018, 148, 205–218. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Z.; Meng, X.; Liu, F.; Dong, W. Was the Record-Breaking Mei-yu of 2020 Enhanced by Regional Climate Change? Bull. Am. Meteorol. Soc. 2022, 103, S76–S82. [Google Scholar] [CrossRef]
- Otto, F.E.; Zachariah, M.; Saeed, F.; Siddiqi, A.; Kamil, S.; Mushtaq, H.; AchutaRao, K.; ST, C.; Barnes, C.; Philip, S. Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan. Environ. Res. Clim. 2023, 2, 025001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Hu, X.; Chen, Y.; Hu, Z.; Feng, T.; Feng, G. Different Characteristics and Drivers of the Extraordinary Pakistan Rainfall in July and August 2022. Remote Sens. 2023, 15, 2311. https://doi.org/10.3390/rs15092311
Ma Y, Hu X, Chen Y, Hu Z, Feng T, Feng G. Different Characteristics and Drivers of the Extraordinary Pakistan Rainfall in July and August 2022. Remote Sensing. 2023; 15(9):2311. https://doi.org/10.3390/rs15092311
Chicago/Turabian StyleMa, Yuanyuan, Xiaoxue Hu, Yiting Chen, Zhiyuan Hu, Taichen Feng, and Guolin Feng. 2023. "Different Characteristics and Drivers of the Extraordinary Pakistan Rainfall in July and August 2022" Remote Sensing 15, no. 9: 2311. https://doi.org/10.3390/rs15092311
APA StyleMa, Y., Hu, X., Chen, Y., Hu, Z., Feng, T., & Feng, G. (2023). Different Characteristics and Drivers of the Extraordinary Pakistan Rainfall in July and August 2022. Remote Sensing, 15(9), 2311. https://doi.org/10.3390/rs15092311