Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data
Abstract
:1. Introduction
2. Geographic and Geological Overview
3. Materials and Methods
3.1. Workflow
3.2. Stage 1: Field Characterization
3.3. Stage 2: Historical Analysis
3.4. Stage 3: Multi-Scale Slope Characterization
3.5. Stage 4: Multi-Temporal ALS and SAR ST Analysis
3.6. Stage 5: Integrated Interpretation
4. Results
4.1. Historical Analysis
4.2. Multi-Scale Slope Characterization
4.2.1. Slope-Scale Analysis
4.2.2. Outcrop-Scale Analysis
4.2.3. Comparison of Slope- and Outcrop-Scale Datasets
4.3. Multi-Temporal ALS and SAR ST Analysis
4.3.1. ALS Change Detection
4.3.2. Characterizing Landslide Displacement Using the Speckle-tracking Datasets
4.3.3. Profile Construction and Description
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Winter, M.G.; Shearer, B.; Palmer, D.; Peeling, D.; Harmer, C.; Sharpe, J. The Economic Impact of Landslides and Floods on the Road Network. Procedia Eng. 2016, 143, 1425–1434. [Google Scholar] [CrossRef]
- Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning. Principles and Processing; Taylor & Francis Group: Abingdon, UK, 2008; ISBN 978-1-4200-5142-1. [Google Scholar]
- Agliardi, F.; Crosta, G.B.; Meloni, F.; Valle, C.; Rivolta, C. Structurally-Controlled Instability, Damage and Slope Failure in a Porphyry Rock Mass. Tectonophysics 2013, 605, 34–47. [Google Scholar] [CrossRef]
- Stead, D.; Donati, D.; Wolter, A.; Sturzenegger, M. Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned. ISPRS Int. J. Geo-Inf. 2019, 8, 296. [Google Scholar] [CrossRef]
- Donati, D.; Westin, A.M.; Stead, D.; Clague, J.J.; Stewart, T.W.; Lawrence, M.S.; Marsh, J. A Reinterpretation of the Downie Slide (British Columbia, Canada) Based on Slope Damage Characterization and Subsurface Data Interpretation. Landslides 2021, 18, 1561–1583. [Google Scholar] [CrossRef]
- Francioni, M.; Salvini, R.; Stead, D.; Giovannini, R.; Riccucci, S.; Vanneschi, C.; Gullì, D. An Integrated Remote Sensing-GIS Approach for the Analysis of an Open Pit in the Carrara Marble District, Italy: Slope Stability Assessment through Kinematic and Numerical Methods. Comput. Geotech. 2015, 67, 46–63. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Lato, M.; Gaib, S. Spatio-Temporal Characterization of Slope Damage: Insights from the Ten Mile Slide, British Columbia, Canada. Landslides 2020, 17, 1037–1049. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Derron, M.-H. Chapter 7—Landslide Analysis Using Laser Scanners. In Developments in Earth Surface Processes; Tarolli, P., Mudd, S.M., Eds.; Remote Sensing of Geomorphology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 207–230. [Google Scholar]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV Monitoring and Documentation of a Large Landslide. Appl. Geomat. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Francioni, M.; Coggan, J.; Eyre, M.; Stead, D. A Combined Field/Remote Sensing Approach for Characterizing Landslide Risk in Coastal Areas. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 79–95. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and Ground-Based Remote Sensing Techniques for Landslide Mapping, Monitoring and Early Warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Walton, G.; Christiansen, C.; Kromer, R.; Silaev, A. Evaluation of Rockfall Trends at a Sedimentary Rock Cut near Manitou Springs, Colorado, Using Daily Photogrammetric Monitoring. Landslides 2023, 20, 2657–2674. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. "Structure-from-Motion" Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Sturzenegger, M.; Stead, D. Close-Range Terrestrial Digital Photogrammetry and Terrestrial Laser Scanning for Discontinuity Characterization on Rock Cuts. Eng. Geol. 2009, 106, 163–182. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Pasuto, A.; Galgaro, A. Integration of Laser Scanning and Thermal Imaging in Monitoring Optimization and Assessment of Rockfall Hazard: A Case History in the Carnic Alps (Northeastern Italy). Nat. Hazards 2015, 76, 1535–1549. [Google Scholar] [CrossRef]
- Franzosi, F.; Crippa, C.; Derron, M.-H.; Jaboyedoff, M.; Agliardi, F. Slope-Scale Remote Mapping of Rock Mass Fracturing by Modeling Cooling Trends Derived from Infrared Thermography. Remote Sens. 2023, 15, 4525. [Google Scholar] [CrossRef]
- Kurz, T.H.; Buckley, S.J.; Howell, J. A Close-Range Hyperspectral Imaging for Geological Field Studies: Workflow and Methods. Int. J. Remote Sens. 2013, 34, 1798–1822. [Google Scholar] [CrossRef]
- Kromer, R.A.; Abellán, A.; Hutchinson, D.J.; Lato, M.; Chanut, M.-A.; Dubois, L.; Jaboyedoff, M. Automated Terrestrial Laser Scanning with Near-Real-Time Change Detection—Monitoring of the Séchilienne Landslide. Earth Surf. Dyn. 2017, 5, 293–310. [Google Scholar] [CrossRef]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J.; Afana, A.A. Optimising 4-D Surface Change Detection: An Approach for Capturing Rockfall Magnitude–Frequency. Earth Surf. Dyn. 2018, 6, 101–119. [Google Scholar] [CrossRef]
- Kromer, R.; Walton, G.; Gray, B.; Lato, M.; Group, R. Development and Optimization of an Automated Fixed-Location Time Lapse Photogrammetric Rock Slope Monitoring System. Remote Sens. 2019, 11, 1890. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating Landslides with Space-Borne Synthetic Aperture Radar (SAR) Interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Sharifi, S.; Macciotta, R.; Hendry, M.; Rotheram-Clarke, D.; Huntley, D. Evaluating Topography-Based Methods in 3D Decomposition of InSAR 1D Velocities Obtained for Translational Landslides: Thompson River Valley in Canada. Landslides 2023. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Liu, X. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sens. 2022, 14, 4728. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward Mapping Surface Deformation in Three Dimensions using InSAR. Geophys. Res. Lett. 2004, 31, 169–178. [Google Scholar] [CrossRef]
- Jo, M.J.; Jung, H.S.; Won, J.S.; Poland, M.P.; Miklius, A.; Lu, Z. Measurement of Slow-Moving along-Track Displacement from an Efficient Multiple-Aperture SAR Interferometry (MAI) Stacking. J. Geod. 2015, 89, 411–425. [Google Scholar] [CrossRef]
- Isya, N.H.; Niemeier, W.; Gerke, M. 3D Estimation of Slow Ground Motion using InSAR and the Slope Aspect Assumption, a Case Study: The Puncak Pass Landslide, Indonesia. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W5, 623–630. [Google Scholar] [CrossRef]
- Raspini, F.; Ciampalini, A.; Conte, S.D.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef]
- Teza, G.; Atzeni, C.; Balzani, M.; Galgaro, A.; Galvani, G.; Genevois, R.; Luzi, G.; Mecatti, D.; Noferini, L.; Pieraccini, M.; et al. Ground-based Monitoring of High-risk Landslides through joint use of Laser Scanner and Interferometric Radar. Int. J. Remote Sens. 2008, 29, 4735–4756. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Frattini, P.; Malusà, M.G. Giant Non-Catastrophic Landslides and the Long-Term Exhumation of the European Alps. Earth Planet. Sci. Lett. 2013, 365, 263–274. [Google Scholar] [CrossRef]
- Donati, D.; Rabus, B.; Engelbrecht, J.; Stead, D.; Clague, J.; Francioni, M. A Robust SAR Speckle Tracking Workflow for Measuring and Interpreting the 3D Surface Displacement of Landslides. Remote Sens. 2021, 13, 3048. [Google Scholar] [CrossRef]
- Newman, S.D. Deep-Seated Gravitational Slope Deformations Near the Trans-Alaska Pipeline, East-Central Alska Range. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2013. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Nokleberg, W.J.; Aleinikoff, J.N. Summary of Stratigraphy, Structure, and Metamorphism of Devonian Igneous-Arc Terranes, Northeastern Mount Hayes Quadrangle, Eastern Alaskan Range. In The United States Geological Survey in Alaska; Accomplishments during 1984: U.S. Geological Survey Circular 967; U.S. Geological Survey: Reston, VA, USA, 1985. [Google Scholar]
- Nokleberg, W.J.; Aleinikoff, J.N.; Bond, G.C.; Ferrians, O.J.; Herzon, P.L.; Lange, I.M.; Miyaoka, R.T.; Richter, D.H.; Schwab, C.E.; Silva, S.R.; et al. Geologic Maps of the Eastern Alaska Range, Alaska (44 Quadrangles, 1:63,360 Scale), with Descriptions and Interpretations of Map Units: Alaska Division of Geological & Geophysical Surveys Report of Investigation; Alaska Division of Geological & Geophysical Surveys: College, AK, USA, 2015.
- Eberhart-Phillips, D.; Haeussler, P.J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; et al. The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science 2003, 300, 1113–1118. [Google Scholar] [CrossRef]
- Haeussler, P.J. Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 Earthquake, Alaska. Bull. Seismol. Soc. Am. 2004, 94, S23–S52. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K. Landslides Triggered by the 2002 Denali Fault, Alaska, Earthquake and the Inferred Nature of the Strong Shaking. Earthq. Spectra 2004, 20, 669–691. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K. Large Rock Avalanches Triggered by the M 7.9 Denali Fault, Alaska, Earthquake of 3 November 2002. Eng. Geol. 2006, 83, 144–160. [Google Scholar] [CrossRef]
- Grantz, A.; Plafker, G.; Kachadoorian, R. Alaska’s Good Friday Earthquake, March 27, 1964: A Preliminary Geologic Evaluation; Geolological Survey Circular 491; U.S. Department of the Interior, Geological Survey: Washington, DC, USA, 1964; pp. 1–35. [CrossRef]
- Planet Team Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. 2019. Available online: https://developers.planet.com (accessed on 1 July 2023).
- Grämiger, L.M.; Moore, J.R.; Gischig, V.S.; Ivy-Ochs, S.; Loew, S. Beyond Debuttressing: Mechanics of Paraglacial Rock Slope Damage during Repeat Glacial Cycles. J. Geophys. Res. Earth Surf. 2017, 122, 1004–1036. [Google Scholar] [CrossRef]
- Kos, A.; Amann, F.; Strozzi, T.; Delaloye, R.; von Ruette, J.; Springman, S. Contemporary Glacier Retreat Triggers a Rapid Landslide Response, Great Aletsch Glacier, Switzerland. Geophys. Res. Lett. 2016, 43, 12, 412–466, 474. [Google Scholar] [CrossRef]
- Clayton, A.; Stead, D.; Kinakin, D.; Wolter, A. Engineering Geomorphological Interpretation of the Mitchell Creek Landslide, British Columbia, Canada. Landslides 2017, 14, 1655–1675. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Brideau, M.A.; Ghirotti, M. Using Pre-Failure and Post-Failure Remote Sensing Data to Constrain the Three-Dimensional Numerical Model of a Large Rock Slope Failure. Landslides 2021, 18, 827–847. [Google Scholar] [CrossRef]
- Howley, M.W. A Late Glacial and Holocene Chronology of the Castner Glacier, Delta River Valley, Alaska. Master’s Thesis, University of New Hampshire, Durham, NH, USA, 2008. [Google Scholar]
- Sharma, J.; Busler, J.; Francioni, M.; Stead, D.; Donati, D.; Onsel, E.; Clague, J.J.; Brideau, M.A. Monitoring Landslides along Pipeline Corridors using a Combined Satellite-Based InSAR and Geomechanical Modelling Approach. In Proceedings of the 69th Canadian Geotechnical Conference, Vancouver, BC, Canada, 2–5 October 2016. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical Estimates of Rock Mass Strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek–Brown Failure Criterion and GSI—2018 Edition. J. Rock Mech. Geotech. Eng. 2019, 11, 445–463. [Google Scholar] [CrossRef]
- Barton, N.R. ISRM Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar] [CrossRef]
- ESRI ArcMap 10.6. 2019. Available online: https://www.esri.com/ (accessed on 15 March 2023).
- Francioni, M.; Stead, D.; Clague, J.J.; Westin, A. Identification and Analysis of Large Paleo-Landslides at Mount Burnaby, British Columbia. Environ. Eng. Geosci. 2018, 24, 221–235. [Google Scholar] [CrossRef]
- Stead, D.; Wolter, A. A Critical Review of Rock Slope Failure Mechanisms: The Importance of Structural Geology. J. Struct. Geol. 2015, 74, 1–23. [Google Scholar] [CrossRef]
- Rocscience DIPS. 2022. Available online: https://www.rocscience.com/software/dips (accessed on 15 March 2023).
- Brideau, M.-A.; Yan, M.; Stead, D. The Role of Tectonic Damage and Brittle Rock Fracture in the Development of Large Rock Slope Failures. Geomorphology 2009, 103, 30–49. [Google Scholar] [CrossRef]
- FLIR ResearchIR. 2019. Available online: https://www.flir.com/support-center/Instruments/researchir/ (accessed on 15 March 2023).
- CloudCompare 2.12 [GPL Software]. 2022. Available online: https://www.danielgm.net/cc/ (accessed on 15 March 2023).
- Intrieri, E.; Frodella, W.; Raspini, F.; Bardi, F.; Tofani, V. Using Satellite Interferometry to Infer Landslide Sliding Surface Depth and Geometry. Remote Sens. 2020, 12, 1462. [Google Scholar] [CrossRef]
- Wood, F.B. Global Alpine Glacier Trends, 1960s to 1980s. Arct. Alp. Res. 1988, 20, 404–413. [Google Scholar] [CrossRef]
- Molnia, B.F. Late Nineteenth to Early Twenty-First Century Behavior of Alaskan Glaciers as Indicators of Changing Regional Climate. Glob. Planet. Chang. 2007, 56, 23–56. [Google Scholar] [CrossRef]
- Koch, J.; Menounos, B.; Clague, J.J. Glacier Change in Garibaldi Provincial Park, Southern Coast Mountains, British Columbia, since the Little Ice Age. Glob. Planet. Chang. 2009, 66, 161–178. [Google Scholar] [CrossRef]
- Sturzenegger, M.; Stead, D.; Elmo, D. Terrestrial Remote Sensing-Based Estimation of Mean Trace Length, Trace Intensity and Block Size/Shape. Eng. Geol. 2011, 119, 96–111. [Google Scholar] [CrossRef]
- Boncori, J.P.M. Measuring Coseismic Deformation with Spaceborne Synthetic Aperture Radar: A Review. Front. Earth Sci. 2019, 7, 1–20. [Google Scholar] [CrossRef]
- Rocscience SWEDGE. 2022. Available online: https://www.rocscience.com/software/swedge (accessed on 15 March 2023).
- Holm, K.; Bovis, M.; Jakob, M. The Landslide Response of Alpine Basins to Post-Little Ice Age Glacial Thinning and Retreat in Southwestern British Columbia. Geomorphology 2004, 57, 201–216. [Google Scholar] [CrossRef]
- Riva, F.; Agliardi, F.; Amitrano, D.; Crosta, G.B. Damage-Based Time-Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes. J. Geophys. Res. Earth Surf. 2018, 123, 124–141. [Google Scholar] [CrossRef]
- Roberti, G.; Ward, B.; van Wyk de Vries, B.; Friele, P.; Perotti, L.; Clague, J.J.; Giardino, M. Precursory Slope Distress Prior to the 2010 Mount Meager Landslide, British Columbia. Landslides 2018, 15, 637–647. [Google Scholar] [CrossRef]
- Kvapil, R.; Clews, M. An Examination of the Prandtl Mechanism in Large Dimension Slope Failures. Trans. Inst. Min. Metall. Sect. A 1979, 88, A1–A5. [Google Scholar]
- Gischig, V.S.; Eberhardt, E.; Moore, J.R.; Hungr, O. On the Seismic Response of Deep-Seated Rock Slope Instabilities—Insights from Numerical Modeling. Eng. Geol. 2015, 193, 1–18. [Google Scholar] [CrossRef]
- Hudson, J.A. Rock Engineering Systems—Theory and Practice; Ellis Horwood Limited: Hemel Hempstead, UK, 1992. [Google Scholar]
- Barla, G.; Antolini, F.; Barla, M.; Mensi, E.; Piovano, G. Monitoring of the Beauregard Landslide (Aosta Valley, Italy) Using Advanced and Conventional Techniques. Eng. Geol. 2010, 116, 218–235. [Google Scholar] [CrossRef]
- Ambrosi, C.; Crosta, G.B. Large Sackung along Major Tectonic Features in the Central Italian Alps. Eng. Geol. 2006, 83, 183–200. [Google Scholar] [CrossRef]
- Ganerød, G.V.; Grøneng, G.; Rønning, J.S.; Dalsegg, E.; Elvebakk, H.; Tønnesen, J.F.; Kveldsvik, V.; Eiken, T.; Blikra, L.H.; Braathen, A. Geological Model of the Åknes Rockslide, Western Norway. Eng. Geol. 2008, 102, 1–18. [Google Scholar] [CrossRef]
- Kristensen, L.; Rivolta, C.; Dehles, J.; Blikra, L.H. GB Insar Measurement at the Åknes Rockslide, Norway. Ital. J. Eng. Geol. Environ. 2013, 339–348. [Google Scholar] [CrossRef]
- Prager, C.; Zangerl, C.; Nagler, T. Geological Controls on Slope Deformations in the Kofels Rockslide Area (Tyrol, Austria). Austrian J. Earth Sci. 2009, 102, 4–19. [Google Scholar]
- Eriksen, H.Ø.; Lauknes, T.R.; Larsen, Y.; Corner, G.D.; Bergh, S.G.; Dehls, J.; Kierulf, H.P. Visualizing and Interpreting Surface Displacement Patterns on Unstable Slopes Using Multi-Geometry Satellite SAR Interferometry (2D InSAR). Remote Sens. Environ. 2017, 191, 297–312. [Google Scholar] [CrossRef]
- Vick, L.M.; Böhme, M.; Rouyet, L.; Bergh, S.G.; Corner, G.D.; Lauknes, T.R. Structurally Controlled Rock Slope Deformation in Northern Norway. Landslides 2020, 17, 1745–1776. [Google Scholar] [CrossRef]
Type | Dataset | Use in this Study | Year | Original Areal Extent | Resolution | Source |
---|---|---|---|---|---|---|
RGB imagery | RapidEye satellite imagery | Historical analysis of glacier and surface cracks | 2010 | ca. 25 × 20 km | 5 m/pixel | Obtained from Planet Labs database ([41]) |
Historical air photographs | 1949 | ca. 15 × 18 km | 1 m/pixel | Obtained from USGS Earth Explorer database | ||
1977 | ca. 28 × 28 km | 1 m/pixel | ||||
1981 | ca. 28 × 28 km | 1 m/pixel | ||||
Slope-scale orthophoto | 2017 | ca. 2 × 2 km | 0.5 m/pixel | Created from helicopter- and ground-based-SfM surveys | ||
Digital photographs of rock outcrop | SfM reconstruction for discontinuity mapping | 2017 | ca. 12 × 8 m | ca. 0.2 mm/pixel | Ground-based survey | |
Laser datasets | ALS DEM | Elevation change detection analysis | 2014 | ca. 4 × 5 km | 3 m/pixel | Provided by Alyeska Pipeline Service Company |
2016 | ca. 4 × 5 km | 1 m/pixel | ||||
TLS point cloud | Registration of SfM models | 2017 | ca. 2 × 2 km | ca. 10 pts/m2 | Ground-based survey | |
Infrared datasets | IRT | Groundwater seepage analysis | 2017 | ca. 2 × 2 km | ca. 1 m/pixel | Collected from ground-based survey |
SAR datasets | RadarSat-2 SAR imagery | SAR ST analysis | 2010 | ca. 13 × 8 km | 1.5 m by 5 m pixels | Obtained from Canadian Space Agency database through MDA * |
2015 | ca. 13 × 8 km | 1.5 m by 5 m pixels | ||||
2020 | ca. 13 × 8 km | 1.5 m by 5 m pixels |
Month/Year of the Imagery | Cumulative Glacier Retreat (m) | Cumulative Length of Surface Cracking (m) | Fast-Moving Toe Surface Area (m2) | Glacial Ice Surface Elevation (Mid-Point of Fast-Moving Toe) (m a.s.l.) |
---|---|---|---|---|
August 1949 | (baseline) | 1300 | 200,000 | 1024 |
June 1977 | 410 | 2100 | 235,000 | 1009 |
August 1981 | 570 | 3550 | 236,000 | 990 |
August 2010 | 1000 | 9750 | 266,000 | 945 |
August 2017 | 1020 | 12,760 | 320,000 | 945 |
Site | Rock Mass and Slope Characterization | Deformation Monitoring Method and Time | Reference |
---|---|---|---|
Mt. Gorsa (Italy) |
|
| [4] |
Beauregard DSGSD (Italy) |
|
| [71] |
Five DSGSDs in Central Italian Alps (Italy) |
|
| [72] |
Aknes rockslide (Norway) |
|
| [73,74] |
Köfels rockslide (Austria) |
|
| [75] |
Rockslides in the Troms County (Norway) |
|
| [76,77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, D.; Stead, D.; Rabus, B.; Engelbrecht, J.; Clague, J.J.; Newman, S.D.; Francioni, M. Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data. Remote Sens. 2024, 16, 117. https://doi.org/10.3390/rs16010117
Donati D, Stead D, Rabus B, Engelbrecht J, Clague JJ, Newman SD, Francioni M. Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data. Remote Sensing. 2024; 16(1):117. https://doi.org/10.3390/rs16010117
Chicago/Turabian StyleDonati, Davide, Doug Stead, Bernhard Rabus, Jeanine Engelbrecht, John J. Clague, Stephen D. Newman, and Mirko Francioni. 2024. "Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data" Remote Sensing 16, no. 1: 117. https://doi.org/10.3390/rs16010117
APA StyleDonati, D., Stead, D., Rabus, B., Engelbrecht, J., Clague, J. J., Newman, S. D., & Francioni, M. (2024). Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data. Remote Sensing, 16(1), 117. https://doi.org/10.3390/rs16010117