Using Atmospheric Inverse Modelling of Methane Budgets with Copernicus Land Water and Wetness Data to Detect Land Use-Related Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finland’s Landscape
2.2. Atmospheric Inversion Model CarbonTracker Europe—CH
2.3. Prior Emissions
2.3.1. Anthropogenic
2.3.2. Natural
2.4. Methane Emission Estimates of the Finnish GHG Inventory
2.5. Land Cover Classification Map
- Settlement (2.4%)
- Agricultural lands, mineral soil (5.7%)
- Agricultural lands, peat (0.7%)
- Forest land, mineral soil (33.1%)
- Forest land, peat (11.1%)
- Forest land, afforested mineral soil (10.3%)
- Forest land, afforested peat (<0.0%)
- Transitional woodland (tree crown cover 10–30%), mineral soil (4.4%)
- Transitional woodland, peat (2.2%)
- Transitional woodland, deforested (<0.0%)
- Transitional woodland, peat, deforested (0.2%)
- Open mineral soil (tree crown cover < 10%) (5.1%)
- Wetlands, Marsh (0.2%)
- Wetlands, Open bogs (5.1%)
- Wetlands, peat production (0.3%)
- Water (sea, lake, river) (19.4%)
2.6. Copernicus Water and Wetness
2.7. Using Linear Regression to Estimate LULUCF Methane Emissions
3. Results
3.1. Spatial and Annual Methane Emission Estimates in Finland
3.2. Methane Emissions by Land Cover Class Estimated with Linear Regression
3.3. Comparison with Land Cover Classes and Remote Sensing Wetness Map
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
LULUCF | Land use, land use change and forestry |
CTE-CH | The inversion model CarbonTracker Europe—CH |
CAMS-REG | Copernicus Atmosphere Monitoring Service Regional inventory; an anthropogenic emission inventory developed for the European domain |
LPX | CH emission estimates from the ecosystem model LPX-Bern DYPTOP |
JSBACH | CH emission estimates from the ecosystem model JSBACH-HIMMELI |
Inv | Optimised CH emission estimates with CTE-CH using LPX as the natural prior emissions |
Inv | Optimised CH emission estimates with CTE-CH using JSBACH as the natural prior emissions |
Copernicus WAW | Copernicus Water and Wetness; describes the occurrence of water and wet surfaces over the period 2009–2018 |
References
- United Nations Framework Convention on Climate Change. The Paris Agreement. 2015. Available online: https://unfccc.int/documents/184656 (accessed on 26 September 2023).
- United Nations Framework Convention on Climate Change. Revision of the UNFCCC Reporting Guidelines on Annual Inventories for Parties Included in Annex I to the Convention, Decision 24/CP.19. 2013, pp. 1–54. Available online: https://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf (accessed on 26 September 2023).
- Ministry of Economic Affairs and Employment. Carbon Neutral Finland 2035—National Climate and Energy Strategy; Ministry of Economic Affairs and Employment: Helsinki, Finland, 2022. Available online: https://julkaisut.valtioneuvosto.fi/bitstream/handle/10024/164323/TEM_2022_55.pdf (accessed on 26 September 2023).
- Vikfors, S.; Mutanen, A.; Ollila, P.; Tuomainen, T. Maankäyttösektori EU:n Ilmastopolitiikassa (Land use Sector in the EU Climate Policy: Assessment on the Proposal of COM(2021) 554 Final by the European Commission). 2022. Available online: https://mmm.fi/documents/1410837/107434499/Maank%C3%A4ytt%C3%B6sektori_EUn_ilmastopolitiikassa.pdf/f44f8bf5-5566-1c74-7666-4787c1c3b266/Maank%C3%A4ytt%C3%B6sektori_EUn_ilmastopolitiikassa.pdf (accessed on 26 September 2023). (In Finnish).
- Statistics Finland. Official Statistics of Finland (OSF): Greenhouse Gases. 2021. Available online: https://stat.fi/en/publication/cktldez2g39g20c53gh3lp5jo (accessed on 13 December 2023).
- Statistics Finland. Greenhouse Gas Emissions in Finland 1990 to 2021. National Inventory Report under the UNFCCC and the Kyoto Protocol; Statistics Finland: Helsinki, Finland, 2023.
- Turunen, J.; Valpola, S. The influence of anthropogenic land use on finnish peatland area and carbon stores 1950–2015. Mires Peat 2020, 26, 26. [Google Scholar] [CrossRef]
- Ojanen, P.; Minkkinen, K.; Alm, J.; Penttilä, T. Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. For. Ecol. Manag. 2010, 260, 411–421. [Google Scholar] [CrossRef]
- Peacock, M.; Granath, G.; Wallin, M.B.; Högbom, L.; Futter, M.N. Significant emissions from forest drainage ditches—An unaccounted term in anthropogenic greenhouse gas inventories? J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006478. [Google Scholar] [CrossRef]
- Tupek, B.; Minkkinen, K.; Pumpanen, J.; Vesala, T.; Nikinmaa, E. CH4 and N2O dynamics in the boreal forest-mire ecotone. Biogeosciences 2015, 12, 281–297. [Google Scholar] [CrossRef]
- Ullah, S.; Moore, T.R. Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada. J. Geophys. Res. 2011, 116, G03010. [Google Scholar] [CrossRef]
- Martikainen, P.J.; Nykänen, H.; Alm, J.; Silvola, J. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 1995, 168–169, 571–577. [Google Scholar] [CrossRef]
- Lohila, A.; Aalto, T.; Aurela, M.; Hatakka, J.; Tuovinen, J.P.; Kilkki, J.; Penttilä, T.; Vuorenmaa, J.; Hänninen, P.; Sutinen, R.; et al. Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year. Geophys. Res. Lett. 2016, 43, 2946–2953. [Google Scholar] [CrossRef]
- Maksyutov, S.; Eggleston, S.; Woo, J.H.; Fang, S.; Witi, J.; Gillenwater, M.; Goodwin, J.; Tubiello, F. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Interlaken, Switzerland, 2019; Volume 1, Chapter 6; pp. 1–45. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 26 September 2023).
- Leip, A.; Skiba, U.; Vermeulen, A.; Thompson, R.L. A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmos. Environ. 2018, 174, 237–240. [Google Scholar] [CrossRef]
- Deng, Z.; Ciais, P.; Tzompa-Sosa, Z.A.; Saunois, M.; Qiu, C.; Tan, C.; Sun, T.; Ke, P.; Cui, Y.; Tanaka, K.; et al. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth Syst. Sci. Data 2022, 14, 1639–1675. [Google Scholar] [CrossRef]
- Henne, S.; Brunner, D.; Oney, B.; Leuenberger, M.; Eugster, W.; Bamberger, I.; Meinhardt, F.; Steinbacher, M.; Emmenegger, L. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmos. Chem. Phys. 2016, 16, 3683–3710. [Google Scholar] [CrossRef]
- Lunt, M.F.; Manning, A.J.; Allen, G.; Arnold, T.; Bauguitte, S.J.; Boesch, H.; Ganesan, A.L.; Grant, A.; Helfter, C.; Nemitz, E.; et al. Atmospheric observations consistent with reported decline in the UK’s methane emissions (2013–2020). Atmos. Chem. Phys. 2021, 21, 16257–16276. [Google Scholar] [CrossRef]
- Houweling, S.; Bergamaschi, P.; Chevallier, F.; Heimann, M.; Kaminski, T.; Krol, M.; Michalak, A.M.; Patra, P. Global inverse modeling of CH4 sources and sinks: An overview of methods. Atmos. Chem. Phys. 2017, 17, 235–256. [Google Scholar] [CrossRef]
- Tsuruta, A.; Aalto, T.; Backman, L.; Hakkarainen, J.; van der Laan-Luijkx, I.T.; Krol, M.C.; Spahni, R.; Houweling, S.; Laine, M.; Dlugokencky, E.; et al. Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 2017, 10, 1261–1289. [Google Scholar] [CrossRef]
- Tsuruta, A.; Kivimäki, E.; Lindqvist, H.; Karppinen, T.; Backman, L.; Hakkarainen, J.; Schneising, O.; Buchwitz, M.; Lan, X.; Kivi, R.; et al. CH4 Fluxes Derived from Assimilation of TROPOMI XCH4 in CarbonTracker Europe-CH4: Evaluation of Seasonality and Spatial Distribution in the Northern High Latitudes. Remote Sens. 2023, 15, 1620. [Google Scholar] [CrossRef]
- Lindqvist, H.; Kivimäki, E.; Tsuruta, A.; Karppinen, T.; Backman, L.; Schneising, O.; Buchwitz, M.; Lorente Delgado, A.; Kivi, R.; Chen, H. Evaluation of Sentinel 5P TROPOMI methane observations at high latitudes. Remote Sens. 2023, in press.
- Härmä, P.; Autio, I.; Teiniranta, R.; Hatunen, S.; Törmä, M.; Kallio, M.; Kaartinen, M. Final Report: Specific Contract No 3436/R0-COPERNICUS/EEA. 56936 Implementing Framework Service Contract No EEA/IDM/R0/16/009/Finland; Technical Report 377; Finnish Environment Centre SYKE: Helsinki, Finland, 2019; Available online: https://www.syke.fi/download/noname/%7B725215CE-EE17-4B5F-A531-CD525425B28C%7D/144830 (accessed on 26 September 2023).
- European Environment Agency. Copernicus Land Monitoring Service High Resolution Land Cover Characteristics. Water & Wetness 2018. 2020. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/7992f641-bf77-47b7-b0c1-74fc832b78b1?language=all (accessed on 7 December 2023). [CrossRef]
- Vaahtera, E.; Peltola, A.; Torvelainen, J.; Uotila, E. Finnish Statistical Yearbook of Forestry; Natural Resources Institute Finland (LUKE): Helsinki, Finland, 2023. Available online: http://urn.fi/URN:ISBN:978-952-380-584-2 (accessed on 26 September 2023).
- Väliranta, M.; Salojärvi, N.; Vuorsalo, A.; Juutinen, S.; Korhola, A.; Luoto, M.; Tuittila, E.S. Holocene fen–bog transitions, current status in Finland and future perspectives. Holocene 2017, 27, 752–764. [Google Scholar] [CrossRef]
- Statistics Finland. Official Statistics of Finland (OSF): Population Structure. 2022. Available online: https://www.stat.fi/tup/suoluk/suoluk_vaesto_en.html (accessed on 8 December 2023).
- Krol, M.; Houweling, S.; Bregman, B.; van den Broek, M.; Segers, A.; van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P.; Broek, M.V.D.; et al. The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys. 2005, 5, 417–432. [Google Scholar] [CrossRef]
- Van der Laan-Luijkx, I.T.; van der Velde, I.R.; van der Veen, E.; Tsuruta, A.; Stanislawska, K.; Babenhauserheide, A.; Zhang, H.F.; Liu, Y.; He, W.; Chen, H.; et al. The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: Implementation and global carbon balance 2001–2015. Geosci. Model Dev. 2017, 10, 2785–2800. [Google Scholar] [CrossRef]
- Peters, W.; Miller, J.B.; Whitaker, J.; Denning, A.S.; Hirsch, A.; Krol, M.C.; Zupanski, D.; Bruhwiler, L.; Tans, P.P. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. Atmos. 2005, 110, 1–18. [Google Scholar] [CrossRef]
- Tsuruta, A.; Aalto, T.; Backman, L.; Krol, M.C.; Peters, W.; Lienert, S.; Joos, F.; Miller, P.A.; Zhang, W.; Laurila, T.; et al. Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system. Tellus B Chem. Phys. Meteorol. 2019, 71, 1565030. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Houweling, S.; Krol, M.; Bergamaschi, P.; Frankenberg, C.; Dlugokencky, E.J.; Morino, I.; Notholt, J.; Sherlock, V.; Wunch, D.; Beck, V.; et al. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmos. Chem. Phys. 2014, 14, 3991–4012. [Google Scholar] [CrossRef]
- Brühl, C.; Crutzen, P.J. MPIC Two-Dimensional Model; Technical Report; NASA: Washington, DC, USA, 1993.
- Schuldt, K.N.; Aalto, T.; Andrews, A.; Aoki, S.; Arduini, J.; Baier, B.; Bergamaschi, P.; Biermann, T.; Biraud, S.C.; Boenisch, H.; et al. Multi-Laboratory Compilation of Atmospheric Methane Data for the Period 1983–2020; Obspack_ch4_1_GLOBALVIEWplus_v3.0_2021-05–07; NOAA Earth System Research Laboratory, Global Monitoring Laboratory: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Sasakawa, M.; Shimoyama, K.; Machida, T.; Tsuda, N.; Suto, H.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O.; Saeki, T.; et al. Continuous measurements of methane from a tower network over Siberia. Tellus Ser. B Chem. Phys. Meteorol. 2010, 62, 403–416. [Google Scholar] [CrossRef]
- Bruhwiler, L.; Dlugokencky, E.; Masarie, K.; Ishizawa, M.; Andrews, A.; Miller, J.; Sweeney, C.; Tans, P.; Worthy, D. CarbonTracker-CH4: An assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 2014, 14, 8269–8293. [Google Scholar] [CrossRef]
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.P.; Super, I.; Denier van der Gon, H. CAMS-REG-v4: A state-of-the-art high-resolution European emission inventory for air quality modelling. Earth System Sci. Data 2022, 14, 491–515. [Google Scholar] [CrossRef]
- European Commission and Joint Research Centre; Olivier, J.; Guizzardi, D.; Schaaf, E.; Solazzo, E.; Crippa, M.; Vignati, E.; Banja, M.; Muntean, M.; Grassi, G.; et al. GHG Emissions of All World—2021 Report; Publications Office of the European Union: Brussels, Belgium, 2021. [Google Scholar] [CrossRef]
- Raivonen, M.; Smolander, S.; Backman, L.; Susiluoto, J.; Aalto, T.; Markkanen, T.; Mäkelä, J.; Rinne, J.; Peltola, O.; Aurela, M.; et al. HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands. Geosci. Model Dev. 2017, 10, 4665–4691. [Google Scholar] [CrossRef]
- Kleinen, T.; Mikolajewicz, U.; Brovkin, V. Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period. Clim. Past 2020, 16, 575–595. [Google Scholar] [CrossRef]
- Lienert, S.; Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 2018, 15, 2909–2930. [Google Scholar] [CrossRef]
- Stocker, B.D.; Spahni, R.; Joos, F. DYPTOP: A cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev. 2014, 7, 3089–3110. [Google Scholar] [CrossRef]
- Spahni, R.; Wania, R.; Neef, L.; Van Weele, M.; Pison, I.; Bousquet, P.; Frankenberg, C.; Foster, P.N.; Joos, F.; Prentice, I.C.; et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 2011, 8, 1643–1665. [Google Scholar] [CrossRef]
- Spahni, R.; Joos, F.; Stocker, B.D.; Steinacher, M.; Yu, Z.C. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: From the Last Glacial Maximum to the 21st century. Clim. Past 2013, 9, 1287–1308. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Ito, A.; Inatomi, M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 2012, 9, 759–773. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Wetlands. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Interlaken, Switzerland, 2019; Volume 4, Chapter 7; pp. 1–7. [Google Scholar]
- Intergovernmental Panel on Climate Change. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC: Kanagawa, Japan, 2014; pp. 1–55. [Google Scholar]
- Heymann, Y.; Steenmans, C.; Croissille, G.; Bossard, M. Corine Land Cover—Technical Guide; Technical Report; Office for Official Publications of the European Communities: Luxembourg, 1994. [Google Scholar]
- Törmä, M.; Härmä, P.; Hatunen, S.; Teiniranta, R.; Kallio, M.; Järvenpää, E. Change detection for Finnish CORINE land cover classification. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications II, Prague, Czech Republic, 20–22 September 2011; Volume 8181. [Google Scholar] [CrossRef]
- Härmä, P.; Teiniranta, R.; Törmä, M.; Repo, R.; Järvenpää, E.; Kallio, M. The Production of Finnish Corine Land Cover 2000 Classification. XXth Isprs Congr. 2004, 2000, 1330–1335. [Google Scholar]
- European Environment Agency. Copernicus Land Monitoring Service: High Resolution Layers. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers (accessed on 7 December 2023).
- Kallio, M. HRL 2018 Look & Feel Verification Report for Wetness and Water (WaW); Technical Report; Finnish Environment Institute SYKE: Helsinki, Finland, 2021. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Kou, D.; Virtanen, T.; Treat, C.C.; Tuovinen, J.; Räsänen, A.; Juutinen, S.; Mikola, J.; Aurela, M.; Heiskanen, L.; Heikkilä, M.; et al. Peatland Heterogeneity Impacts on Regional Carbon Flux and Its Radiative Effect Within a Boreal Landscape. J. Geophys. Res. Biogeosci. 2022, 127. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hoese, D.; Raspaud, M.; Lahtinen, P.; Roberts, W. Lavergne. Pytroll/Pyresample: Version 1.16.0. 2020. Available online: https://pyresample.readthedocs.io/ (accessed on 26 September 2023).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; Volume 42, pp. 785–794. [Google Scholar] [CrossRef]
- Susiluoto, J.; Raivonen, M.; Backman, L.; Laine, M.; Makela, J.; Peltola, O.; Vesala, T.; Aalto, T. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC. Geosci. Model Dev. 2018, 11, 1199–1228. [Google Scholar] [CrossRef]
- Juutinen, S.; Alm, J.; Larmola, T.; Huttunen, J.T.; Morero, M.; Saarnio, S.; Martikainen, P.J.; Silvola, J. Methane (CH4) release from littoral wetlands of Boreal lakes during an extended flooding period. Glob. Chang. Biol. 2003, 9, 413–424. [Google Scholar] [CrossRef]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Marklund, P.; Ottosson-Löfvenius, M.; Smith, P. ICOS ATC CH4 Release, Svartberget (150.0 m), 1 June 2017–28 February 2022. 2022. Available online: https://hdl.handle.net/11676/atargbJjvxhGDR2Yov09hD-E (accessed on 26 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenkanen, M.K.; Tsuruta, A.; Tyystjärvi, V.; Törmä, M.; Autio, I.; Haakana, M.; Tuomainen, T.; Leppänen, A.; Markkanen, T.; Raivonen, M.; et al. Using Atmospheric Inverse Modelling of Methane Budgets with Copernicus Land Water and Wetness Data to Detect Land Use-Related Emissions. Remote Sens. 2024, 16, 124. https://doi.org/10.3390/rs16010124
Tenkanen MK, Tsuruta A, Tyystjärvi V, Törmä M, Autio I, Haakana M, Tuomainen T, Leppänen A, Markkanen T, Raivonen M, et al. Using Atmospheric Inverse Modelling of Methane Budgets with Copernicus Land Water and Wetness Data to Detect Land Use-Related Emissions. Remote Sensing. 2024; 16(1):124. https://doi.org/10.3390/rs16010124
Chicago/Turabian StyleTenkanen, Maria K., Aki Tsuruta, Vilna Tyystjärvi, Markus Törmä, Iida Autio, Markus Haakana, Tarja Tuomainen, Antti Leppänen, Tiina Markkanen, Maarit Raivonen, and et al. 2024. "Using Atmospheric Inverse Modelling of Methane Budgets with Copernicus Land Water and Wetness Data to Detect Land Use-Related Emissions" Remote Sensing 16, no. 1: 124. https://doi.org/10.3390/rs16010124
APA StyleTenkanen, M. K., Tsuruta, A., Tyystjärvi, V., Törmä, M., Autio, I., Haakana, M., Tuomainen, T., Leppänen, A., Markkanen, T., Raivonen, M., Niinistö, S., Arslan, A. N., & Aalto, T. (2024). Using Atmospheric Inverse Modelling of Methane Budgets with Copernicus Land Water and Wetness Data to Detect Land Use-Related Emissions. Remote Sensing, 16(1), 124. https://doi.org/10.3390/rs16010124