AI for Marine, Ocean and Climate Change Monitoring
1. Introduction
2. Articles
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, S.; Zhao, A.; Qin, M.; Hu, L.; Wu, S.; Du, Z.; Liu, R. A Graph Memory Neural Network for Sea Surface Temperature Prediction. Remote Sens. 2023, 15, 3539. [Google Scholar] [CrossRef]
- Jia, X.; Ji, Q.; Han, L.; Liu, Y.; Han, G.; Lin, X. Prediction of Sea Surface Temperature in the East China Sea Based on LSTM Neural Network. Remote Sens. 2022, 14, 3300. [Google Scholar] [CrossRef]
- Laval, M.; Belmouhcine, A.; Courtrai, L.; Descloitres, J.; Salazar-Garibay, A.; Schamberger, L.; Minghelli, A.; Thibaut, T.; Dorville, R.; Mazoyer, C.; et al. Detection of Sargassum from Sentinel Satellite Sensors Using Deep Learning Approach. Remote Sens. 2023, 15, 1104. [Google Scholar] [CrossRef]
- Vient, J.-M.; Fablet, R.; Jourdin, F.; Delacourt, C. End-to-End Neural Interpolation of Satellite-Derived Sea Surface Suspended Sediment Concentrations. Remote Sens. 2022, 14, 4024. [Google Scholar] [CrossRef]
- Kurihana, T.; Moyer, E.J.; Foster, I.T. AICCA: AI-Driven Cloud Classification Atlas. Remote Sens. 2022, 14, 5690. [Google Scholar] [CrossRef]
- Cen, H.; Jiang, J.; Han, G.; Lin, X.; Liu, Y.; Jia, X.; Ji, Q.; Li, B. Applying Deep Learning in the Prediction of Chlorophyll-a in the East China Sea. Remote Sens. 2022, 14, 5461. [Google Scholar] [CrossRef]
- Renosh, P.R.; Zhang, J.; Sauzède, R.; Claustre, H. Vertically Resolved Global Ocean Light Models Using Machine Learning. Remote Sens. 2023, 15, 5663. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, Z.; Li, Q.; Zhou, X. Spatiotemporal Prediction of Monthly Sea Subsurface Temperature Fields Using a 3D U-Net-Based Model. Remote Sens. 2022, 14, 4890. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, W.; Wang, X. Deep Learning to Near-Surface Humidity Retrieval from Multi-Sensor Remote Sensing Data over the China Seas. Remote Sens. 2022, 14, 4353. [Google Scholar] [CrossRef]
- Trossman, D.; Bayler, E. An Algorithm to Bias-Correct and Transform Arctic SMAP-Derived Skin Salinities into Bulk Surface Salinities. Remote Sens. 2022, 14, 1418. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Cavaliere, D.; Charles, E.; Ciani, D. Super-Resolving Ocean Dynamics from Space with Computer Vision Algorithms. Remote Sens. 2022, 14, 1159. [Google Scholar] [CrossRef]
Title | Authors | Keywords |
---|---|---|
A Graph Memory Neural Network for Sea Surface Temperature Prediction | Shuchen Liang Anming Zhao Mengjiao Qin Linshu Hu Sensen Wu Zhenhong Du Renyi Liu | sea surface temperature spatiotemporal prediction deep learning graph neural network |
Prediction of Sea Surface Temperature in the East China Sea Based on LSTM Neural Network | Xiaoyan Jia Qiyan Ji Lei Han Yu Liu Guoqing Han Xiayan Lin | long short-term memory (LSTM) sea surface temperature (SST) East China Sea |
Detection of Sargassum from Sentinel Satellite Sensors Using Deep Learning Approach | Marine Laval Abdelbadie Belmouhcine Luc Courtrai Jacques Descloitres Adán Salazar-Garibay Léa Schamberger Audrey Minghelli Thierry Thibaut René Dorville Camille Mazoyer Pascal Zongo Cristèle Chevalier | ocean color Sargassum MODIS MSI OLCI Sentinel-2 Sentinel-3 convolutional neural network deep learning |
End-to-End Neural Interpolation of Satellite-Derived Sea Surface Suspended Sediment Concentrations | Jean-Marie Vient Ronan Fablet Frédéric Jourdin Christophe Delacourt | Interpolation data-driven model neural networks variational data assimilation missing data suspended particulate matter observing system experiment Bay of Biscay |
AICCA: AI-Driven Cloud Classification Atlas | Takuya Kurihana Elisabeth Moyer Ian T. Foster | cloud classification MODIS artificial intelligence deep learning machine learning |
Applying Deep Learning in the Prediction of Chlorophyll-a in the East China Sea | Haobin Cen Jiahan Jiang Guoqing Han Xiayan Lin Yu Liu Xiaoyan Jia Qiyan Ji Bo Li | LSTM chlorophyll-a East China Sea |
Vertically Resolved Global Ocean Light Models Using Machine Learning | Pannimpullath Remanan Renosh Jie Zhang Raphaëlle Sauzède Hervé Claustre | BGC-Argo ED380 ED412 ED490 global ocean light models neural network PAR |
Spatiotemporal Prediction of Monthly Sea Subsurface Temperature Fields Using a 3D U-Net-Based Model | Nengli Sun Zeming Zhou Qian Li Xuan Zhou | sea temperature prediction reconstructed sea subsurface temperature data 3D U-Net |
Deep Learning to Near-Surface Humidity Retrieval from Multi-Sensor Remote Sensing Data over the China Seas | Rongwang Zhang Weihao Guo Xin Wang | near-surface humidity remote sensing deep learning China Seas |
An Algorithm to Bias-Correct and Transform Arctic SMAP-Derived Skin Salinities into Bulk Surface Salinities | David Trossman Eric Bayler | Salinity SMAP skin-effect bias air-sea Arctic ocean machine-learning |
Super-Resolving Ocean Dynamics from Space with Computer Vision Algorithms | Bruno Buongiorno Nardelli Davide Cavaliere Elodie Charles Daniele Ciani | earth observations ocean dynamics satellite altimetry sea surface temperature artificial intelligence machine learning deep learning neural networks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieves, V.; Ruescas, A.; Sauzède, R. AI for Marine, Ocean and Climate Change Monitoring. Remote Sens. 2024, 16, 15. https://doi.org/10.3390/rs16010015
Nieves V, Ruescas A, Sauzède R. AI for Marine, Ocean and Climate Change Monitoring. Remote Sensing. 2024; 16(1):15. https://doi.org/10.3390/rs16010015
Chicago/Turabian StyleNieves, Veronica, Ana Ruescas, and Raphaëlle Sauzède. 2024. "AI for Marine, Ocean and Climate Change Monitoring" Remote Sensing 16, no. 1: 15. https://doi.org/10.3390/rs16010015
APA StyleNieves, V., Ruescas, A., & Sauzède, R. (2024). AI for Marine, Ocean and Climate Change Monitoring. Remote Sensing, 16(1), 15. https://doi.org/10.3390/rs16010015