Identification of Dominant Species and Their Distributions on an Uninhabited Island Based on Unmanned Aerial Vehicles (UAVs) and Machine Learning Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. UAVs Image Acquisition and Processing
2.2.2. Quadrat Survey and UAVs Sample Point Selection
2.3. Methods
2.3.1. Selection of Feature Dimensions
2.3.2. Machine Learning Models
2.3.3. Accuracy Evaluation
3. Results
3.1. Identification Accuracy of Species based on Four Machine Learning Models
3.2. Identification Accuracy of Dominant Species with SVM Model Based on Different Feature Combinations
3.3. Distribution Characteristics of Dominant Species based on SVM Model with G4 Feature Combinations
4. Discussions
4.1. Differences in Identification Accuracy of Dominant Species by Four Machine Learning Models
4.2. Identification Differences of Dominant Species by SVM Model under Different Feature Combinations
4.3. Spatial Distribution of Dominant Species Based on the Identification by SVM Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham, N.R.; Gruner, D.S.; Lim, J.Y.; Gillespie, R.G. Island Ecology and Evolution: Challenges in the Anthropocene. Environ. Conserv. 2017, 44, 323–335. [Google Scholar] [CrossRef]
- Balzan, M.V.; Potschin-Young, M.; Haines-Young, R. Island Ecosystem Services: Insights from a Literature Review on Case-Study Island Ecosystem Services and Future Prospects. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 71–90. [Google Scholar] [CrossRef]
- Harter, D.E.V.; Irl, S.D.H.; Seo, B.; Steinbauer, M.J.; Gillespie, R.; Triantis, K.A.; Fernández-Palacios, J.-M.; Beierkuhnlein, C. Impacts of Global Climate Change on the Floras of Oceanic Islands—Projections, Implications and Current Knowledge. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 160–183. [Google Scholar] [CrossRef]
- Abella, S.R.; Chiquoine, L.P. The Good with the Bad: When Ecological Restoration Facilitates Native and Non-Native Species. Restor. Ecol. 2019, 27, 343–351. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Fu, Z.; Xie, Z. Spatial Pattern of Plant Diversity in a Group of Uninhabited Islands from the Perspectives of Island and Site Scales. Sci. Total Environ. 2019, 664, 334–346. [Google Scholar] [CrossRef]
- Gong, X.; Qi, Z.; Wen, J.; Yan, Y.; Liu, Q.; Li, Y.; Zhang, Q. Promoting Effects of Soil C and N and Limiting Effect of Soil P Jointly Determine the Plant Diversity during the Aerial Seeding Restoration Process in Mu Us Sandy Land, China. Front. Plant Sci. 2023, 14, 1272607. [Google Scholar] [CrossRef] [PubMed]
- Irl, S.D.H.; Beierkuhnlein, C. Distribution of Endemic Plant Species on an Oceanic Island—A Geospatial Analysis of La Palma (Canary Islands). Procedia Environ. Sci. 2011, 7, 170–175. [Google Scholar] [CrossRef]
- Pouteau, R.; Meyer, J.-Y.; Taputuarai, R.; Stoll, B. Support Vector Machines to Map Rare and Endangered Native Plants in Pacific Islands Forests. Ecol. Inform. 2012, 9, 37–46. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Bertacchi, A.; Giannini, V.; Di Franco, C.; Silvestri, N. Using Unmanned Aerial Vehicles for Vegetation Mapping and Identification of Botanical Species in Wetlands. Landsc. Ecol. Eng. 2019, 15, 231–240. [Google Scholar] [CrossRef]
- Liu, M.; Yu, T.; Gu, X.; Sun, Z.; Yang, J.; Zhang, Z.; Mi, X.; Cao, W.; Li, J. The Impact of Spatial Resolution on the Classification of Vegetation Types in Highly Fragmented Planting Areas Based on Unmanned Aerial Vehicle Hyperspectral Images. Remote Sens. 2020, 12, 146. [Google Scholar] [CrossRef]
- van der Merwe, S.; Greve, M.; Skowno, A.L.; Hoffman, M.T.; Cramer, M.D. Can Vegetation Be Discretely Classified in Species-Poor Environments? Testing Plant Community Concepts for Vegetation Monitoring on Sub-Antarctic Marion Island. Ecol. Evol. 2023, 13, e9681. [Google Scholar] [CrossRef]
- Parker, K.; Elmes, A.; Boucher, P.; Hallett, R.A.; Thompson, J.E.; Simek, Z.; Bowers, J.; Reinmann, A.B. Crossing the Great Divide: Bridging the Researcher–Practitioner Gap to Maximize the Utility of Remote Sensing for Invasive Species Monitoring and Management. Remote Sens. 2021, 13, 4142. [Google Scholar] [CrossRef]
- Komárek, J.; Klouček, T.; Prošek, J. The Potential of Unmanned Aerial Systems: A Tool towards Precision Classification of Hard-to-Distinguish Vegetation Types? Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 9–19. [Google Scholar] [CrossRef]
- Bhatt, P.; Maclean, A.L. Comparison of High-Resolution NAIP and Unmanned Aerial Vehicle (UAV) Imagery for Natural Vegetation Communities Classification Using Machine Learning Approaches. GIScience Remote Sens. 2023, 60, 2177448. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A Framework for Mapping Tree Species Combining Hyperspectral and LiDAR Data: Role of Selected Classifiers and Sensor across Three Spatial Scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, P.; Zhang, X.; Zhou, X.; Li, J.; Guo, R. Object-Based Island Green Cover Mapping by Integrating UAV Multispectral Image and LiDAR Data. J. Appl. Remote Sens. 2021, 15, 034512. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Piaser, E.; Villa, P. Evaluating Capabilities of Machine Learning Algorithms for Aquatic Vegetation Classification in Temperate Wetlands Using Multi-Temporal Sentinel-2 Data. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103202. [Google Scholar] [CrossRef]
- Zhong, G.; Chen, J.; Huang, R.; Yi, S.; Qin, Y.; You, H.; Han, X.; Zhou, G. High Spatial Resolution Fractional Vegetation Coverage Inversion Based on UAV and Sentinel-2 Data: A Case Study of Alpine Grassland. Remote Sens. 2023, 15, 4266. [Google Scholar] [CrossRef]
- Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple Classifier System for Remote Sensing Image Classification: A Review. Sensors 2012, 12, 4764–4792. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Graña, M.; Corchado, E. A Survey of Multiple Classifier Systems as Hybrid Systems. Inf. Fusion 2014, 16, 3–17. [Google Scholar] [CrossRef]
- Du, J.; Chen, J.; Li, S. Factors affecting the damage and recovery of coastal forest after typhoon disturbance: A review. Acta Ecol. Sin. 2024, 44, 1–17. [Google Scholar] [CrossRef]
- Maun, M.A.; Perumal, J. Zonation of Vegetation on Lacustrine Coastal Dunes: Effects of Burial by Sand. Ecol. Lett. 1999, 2, 14–18. [Google Scholar] [CrossRef]
- Du, J.; Hesp, P.A. Salt Spray Distribution and Its Impact on Vegetation Zonation on Coastal Dunes: A Review. Estuaries Coasts 2020, 43, 1885–1907. [Google Scholar] [CrossRef]
- Li, P.; Huang, Z. Vegetation restoration of degraded grassy slopes on Nan’ao Island. Trop. Geogr. 2007, 1, 21–24+65. [Google Scholar] [CrossRef]
- Chopping, M.; Su, L.; Rango, A.; Martonchik, J.V.; Peters, D.P.C.; Laliberte, A. Remote Sensing of Woody Shrub Cover in Desert Grasslands Using MISR with a Geometric-Optical Canopy Reflectance Model. Remote Sens. Environ. 2008, 112, 19–34. [Google Scholar] [CrossRef]
- Fu, X.; Zhou, W.; Zhou, X.; Li, F.; Hu, Y. Classifying Mountain Vegetation Types Using Object-Oriented Machine Learning Methods Based on Different Feature Combinations. Forests 2023, 14, 1624. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, W.; Sun, Y.; Chang, C.; Yu, J.; Zhang, W. Fusion of Multispectral Aerial Imagery and Vegetation Indices for Machine Learning-Based Ground Classification. Remote Sens. 2021, 13, 1411. [Google Scholar] [CrossRef]
- Cantón, Y.; Del Barrio, G.; Solé-Benet, A.; Lázaro, R. Topographic Controls on the Spatial Distribution of Ground Cover in the Tabernas Badlands of SE Spain. CATENA 2004, 55, 341–365. [Google Scholar] [CrossRef]
- Sumaiya Thaseen, I.; Aswani Kumar, C. Intrusion Detection Model Using Fusion of Chi-Square Feature Selection and Multi Class SVM. J. King Saud Univ.—Comput. Inf. Sci. 2017, 29, 462–472. [Google Scholar] [CrossRef]
- Damodaran, B.B.; Nidamanuri, R.R. Assessment of the Impact of Dimensionality Reduction Methods on Information Classes and Classifiers for Hyperspectral Image Classification by Multiple Classifier System. Adv. Space Res. 2014, 53, 1720–1734. [Google Scholar] [CrossRef]
- Waske, B.; Benediktsson, J.A. Fusion of Support Vector Machines for Classification of Multisensor Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3858–3866. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, e1353691. [Google Scholar] [CrossRef]
- Zhang, Z.; Van Coillie, F.; Ou, X.; De Wulf, R. Integration of Satellite Imagery, Topography and Human Disturbance Factors Based on Canonical Correspondence Analysis Ordination for Mountain Vegetation Mapping: A Case Study in Yunnan, China. Remote Sens. 2014, 6, 1026–1056. [Google Scholar] [CrossRef]
- Peña, M.A.; Brenning, A. Assessing Fruit-Tree Crop Classification from Landsat-8 Time Series for the Maipo Valley, Chile. Remote Sens. Environ. 2015, 171, 234–244. [Google Scholar] [CrossRef]
- AlSuwaidi, A.; Grieve, B.; Yin, H. Combining Spectral and Texture Features in Hyperspectral Image Analysis for Plant Monitoring. Meas. Sci. Technol. 2018, 29, 104001. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Cao, J.; Wu, Q.; Zhang, B. Estimating Soil Salinity Using Gaofen-2 Imagery: A Novel Application of Combined Spectral and Textural Features. Environ. Res. 2023, 217, 114870. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Coulibaly, F.; Lameiro, M.; Araminiene, V.; De Marco, A.; Sorrentino, B.; Anav, A.; Manzini, J.; Hoshika, Y.; Moura, B.B.; et al. Object-Based Classification of Urban Plant Species from Very High-Resolution Satellite Imagery. Urban For. Urban Green. 2023, 81, 127866. [Google Scholar] [CrossRef]
- Chen, H.; Tang, K.; Song, H.; Chen, Y.; Sun, Y.; Cai, L. Study on 3 typical salt resistant plant for island vegetation restoration. J. Appl. Oceanogr. 2017, 36, 379–384. [Google Scholar] [CrossRef]
- Berry, N.; Shukla, A. Assessment of Growth Performance of Casuarina Equisetifolia Clones in Tropical Region of Jabalpur District of Madhya Pradesh, India. Int. J. Environ. Clim. Chang. 2023, 13, 266–271. [Google Scholar] [CrossRef]
- Lu, J. A comparative study on growth rate, biomass production and growth process of Acacia mangium at different hilly slopes. Subtrop. Agric. Res. 2016, 12, 79–85. [Google Scholar] [CrossRef]
- Xie, C.; Huang, B.; Jim, C.Y.; Han, W.; Liu, D. Predicting Differential Habitat Suitability of Rhodomyrtus Tomentosa under Current and Future Climate Scenarios in China. For. Ecol. Manag. 2021, 501, 119696. [Google Scholar] [CrossRef]
- Leung, A.K.; Ng, C.W.W. Analyses of Groundwater Flow and Plant Evapotranspiration in a Vegetated Soil Slope. Can. Geotech. J. 2013, 50, 1204–1218. [Google Scholar] [CrossRef]
- An, M.; Han, Y.; Zhao, C.; Qu, Z.; Xu, P.; Wang, X.; He, X. Effects of Different Wind Directions on Soil Erosion and Nitrogen Loss Processes under Simulated Wind-Driven Rain. CATENA 2022, 217, 106423. [Google Scholar] [CrossRef]
- Chau, N.L.; Chu, L.M. Fern Cover and the Importance of Plant Traits in Reducing Erosion on Steep Soil Slopes. CATENA 2017, 151, 98–106. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Feng, Y.; Mo, Q.; Su, Y.; Njoroge, B.; Qu, C.; Gan, X.; Liu, X. Soil Organic Carbon Primarily Control the Soil Moisture Characteristic during Forest Restoration in Subtropical China. Front. Ecol. Evol. 2022, 10, 1003532. [Google Scholar] [CrossRef]
- He, Y.; Dai, Y.; Li, H.; Li, M.; Zhang, S. Growth and Defense Trade-Offs in Dioecious Salix Myrtillacea Exposed to Drought and Low Temperature Stress. Environ. Exp. Bot. 2023, 215, 105504. [Google Scholar] [CrossRef]
- Chen, H.; Tang, K.; Sun, Y.; Cai, L.; Song, H.; Tu, W. Research on drought-tolerant plant screening and drought resistance technology in island vegetation restoration. J. Appl. Oceanogr. 2016, 35, 223–228. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K.; Masto, R.E. Use of Reclaimed Mine Soil Index (RMSI) for Screening of Tree Species for Reclamation of Coal Mine Degraded Land. Ecol. Eng. 2013, 57, 133–142. [Google Scholar] [CrossRef]
Species | Characteristics | True Color | Real Photographs | Numbers |
---|---|---|---|---|
H. heptaphyllum | Green. Stellate texture. Lumpy distribution. | 186 | ||
D. pedata | Light green. Black and purple when wilting. Flaky distribution. | 173 | ||
C. equisetifolia | Brown. Cauliflower-like texture. Clustered distribution. | 185 | ||
A. confusa | Dark green. Umbrella-like texture. Clustered distribution. | 565 | ||
A. mangium | Yellowish green. Point-pattern texture. Solitary distribution. | 37 | ||
S. myrtillacea | Green or dark green. Striped texture. Clustered distribution. | 105 | ||
R. tomentosa | Dark grey. Speckled texture. Clustered distribution. | 28 | ||
Bare ground | Earthy color. Soil particle texture. Irregular blocky distribution. | 48 | ||
Rocks | Brilliant white. Stripe Texture. Irregular polygonal distribution. | 253 | ||
Sea | Blue. Specular texture. Large-scale planar distribution. | 171 |
Feature Dimension | Parameters | Meaning/Formula | Numbers |
---|---|---|---|
Spectral characteristics | , Brightness, Max. Diff. | is the mean value of reflectance; is the standard deviation; Red, Green, Blue, Nir represent the red, green, blue, and near-infrared bands; brightness is the value of luminance; Max. Diff. is the maximum difference. | 10 |
Vegetation index | NDVI, RVI, SAVI | ), , SAVI = (( − )/( + + L))(1 + L) | 3 |
Topographic factors | DEM, Slope, Aspect | DEM represents Digital Elevation Model, Slope is the gradient of the slope, Aspect is the slope direction. | 3 |
Canopy heights | CHM | CHM = DSM − DEM | 1 |
Texture features | Mean, Homogeneity, Entropy, Dissimilarity, Contrast, Correlation | Mean: reflects the degree of regularity of the texture. Homogeneity: reflects the uniformity of local intensity. Entropy: reflects the brightness contrast of neighboring elements. Dissimilarity: reflects the total variation of local intensity. Contrast: reflects the intensity level and confusion. Correlation: reflects similarities between rows or columns. | 6 |
Feature Group | Feature Dimensions Included |
---|---|
G1 | Spectral characteristics |
G2 | Spectral characteristics + Vegetation index |
G3 | Spectral characteristics + Vegetation index + Topographic factors |
G4 | Spectral characteristics + Vegetation index + Topographic factors + Texture features |
G5 | Spectral characteristics + Vegetation index + Topographic factors + Texture features + Canopy heights |
G6 | Feature subset extracted by Chi-square test method. and Slope) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Huang, K.; Luo, Y.; Long, X.; Yu, C.; Xiong, H.; Du, J. Identification of Dominant Species and Their Distributions on an Uninhabited Island Based on Unmanned Aerial Vehicles (UAVs) and Machine Learning Models. Remote Sens. 2024, 16, 1652. https://doi.org/10.3390/rs16101652
Wu J, Huang K, Luo Y, Long X, Yu C, Xiong H, Du J. Identification of Dominant Species and Their Distributions on an Uninhabited Island Based on Unmanned Aerial Vehicles (UAVs) and Machine Learning Models. Remote Sensing. 2024; 16(10):1652. https://doi.org/10.3390/rs16101652
Chicago/Turabian StyleWu, Jinfeng, Kesheng Huang, Youhao Luo, Xiaoze Long, Chuying Yu, Hong Xiong, and Jianhui Du. 2024. "Identification of Dominant Species and Their Distributions on an Uninhabited Island Based on Unmanned Aerial Vehicles (UAVs) and Machine Learning Models" Remote Sensing 16, no. 10: 1652. https://doi.org/10.3390/rs16101652
APA StyleWu, J., Huang, K., Luo, Y., Long, X., Yu, C., Xiong, H., & Du, J. (2024). Identification of Dominant Species and Their Distributions on an Uninhabited Island Based on Unmanned Aerial Vehicles (UAVs) and Machine Learning Models. Remote Sensing, 16(10), 1652. https://doi.org/10.3390/rs16101652