Precision Irrigation Soil Moisture Mapper: A Thermal Inertia Approach to Estimating Volumetric Soil Water Content Using Unmanned Aerial Vehicles and Multispectral Imagery
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. UAV Platform
2.3. Data Collection
2.4. Model Description
2.4.1. Remote Sensing Method and Surface Energy Balance Modeling
2.4.2. Soil Parameters Analysis
3. Results
Soil Moisture Results
4. Discussion
- It gives timely, accurate, spatially distributed soil moisture estimates;
- It has a wide range of operating conditions with easy and flexible use;
- It is a model with a clear physics meaning;
- By detecting chronic wet and dry spots, it can identify deficiencies in the irrigation system;
- It provides continuous, high-resolution estimates which are simply impossible to obtain using in situ sensors;
- The density and continuity of data are superior, which covers around 0.1 km2 in 30 min compared to 1.5 h for 100 TDR measurements in the same area;
- It allows for the operation of independent sprinkler heads with specified durations and frequencies.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Department of Economic and Social Affairs, Population Division; United Nations: New York, NY, USA, 2014. [Google Scholar]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban Growth, Climate Change, and Freshwater Availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Texas Water Development Board. 2017 Sate Water Plan, Water for Texas. Available online: https://www.twdb.texas.gov/waterplanning/swp/2017/doc/SWP17-Water-for-Texas.pdf (accessed on 1 April 2024).
- Cabrera, R.I.; Wagner, K.L.; Wherley, B. An Evaluation of Urban Landscape Water Use in Texas. Tex. Water J. 2013, 4, 14–27. [Google Scholar] [CrossRef]
- Bogena, H.; Huisman, J.; Oberdörster, C.; Vereecken, H. Evaluation of a Low-Cost Soil Water Content Sensor for Wireless Network Applications. J. Hydrol. 2007, 344, 32–42. [Google Scholar] [CrossRef]
- Hilaire, R.; Arnold, M.A.; Wilkerson, D.C.; Devitt, D.A.; Hurd, B.H.; Lesikar, B.J.; Lohr, V.I.; Martin, C.A.; McDonald, G.V.; Morris, R.L.; et al. Efficient Water Use in Residential Urban Landscapes. HortScience 2008, 43, 2081–2092. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Notarnicola, C.; Pasolli, L.; Pistocchi, A. Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site. Remote Sens. 2013, 5, 4961–4976. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M.; Wagner, W. An Assessment of Remotely-Sensed Surface and Root Zone Soil Moisture through Active and Passive Sensors in Northeast Asia. Remote Sens. Environ. 2015, 160, 166–179. [Google Scholar] [CrossRef]
- Jonard, F.; Weiher Sadeghi, L.; Schwank, M.; Jadoon, K.Z.; Vereecken, H.; Lambot, S. Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3095–3109. [Google Scholar] [CrossRef]
- Fabre, S.; Briottet, X.; Lesaignoux, A. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 Μm Domain. Sensors 2015, 15, 3262–3281. [Google Scholar] [CrossRef] [PubMed]
- Vereecken, H.; Huisman, J.; Pachepsky, Y.; Montzka, C.; Kruk, J.V.D.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the Spatio-Temporal Dynamics of Soil Moisture at the Field Scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of Surface Roughness on the Microwave Emission from Soils. J. Geophys. Res. Ocean. 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, from Theory to Applications: 3; Artech House: Norwood, MA, USA, 1986; ISBN 978-0-89006-192-3. [Google Scholar]
- Schmugge, T.; Jackson, T. Passive Microwave Remote Sensing of Soil Moisture. In The Land Surface Processes in Hydrology; Sorooshian, S., Gupta, H.V., Rodda, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 239–262. [Google Scholar]
- Al-Yaari, A.; Wigneron, J.-P.; Ducharne, A.; Kerr, Y.H.; Wagner, W.; De Lannoy, G.; Reichle, R.; Al Bitar, A.; Dorigo, W.; Richaume, P.; et al. Global-Scale Comparison of Passive (SMOS) and Active (ASCAT) Satellite Based Microwave Soil Moisture Retrievals with Soil Moisture Simulations (MERRA-Land). Remote Sens. Environ. 2014, 152, 614–626. [Google Scholar] [CrossRef]
- Muller, E.; Décamps, H. Modeling Soil Moisture–Reflectance. Remote Sens. Environ. 2001, 76, 173–180. [Google Scholar] [CrossRef]
- Zeng, Y.; Feng, Z.; Xiang, N. Assessment of Soil Moisture Using Landsat ETM+ Temperature/Vegetation Index in Semiarid Environment. In Proceedings of the IGARSS 2004. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 6, pp. 4306–4309. [Google Scholar]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the Stress-Degree-Day Parameter for Environmental Variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Alderfasi, A.; Nielsen, D.C. Use of Crop Water Stress Index for Monitoring Water Status and Scheduling Irrigation in Wheat. Agric. Water Manag. 2001, 47, 69–75. [Google Scholar] [CrossRef]
- McVicar, T.R.; Van Niel, T.G.; Lingtao, L.; King, E.A.; Donohue, R.J. Deriving Moisture Availability from Time Series Remote Sensing for Ecohydrological Applications: Development of a Prototype near Real-Time Operational System. CSIRO Land Water Sci. Rep. 2007, 37, 144. [Google Scholar]
- Pohn, H.A.; Offield, T.W.; Watson, K. Thermal Inertia Mapping from Satellite—Discrimination of Geologic Units in Oman. J. Res. U.S. Geol. Surv. 1974, 2, 147–158. [Google Scholar]
- Kahle, A.B.; Gillespie, A.R.; Goetz, A.F.H. Thermal Inertia Imaging: A New Geologic Mapping Tool. Geophys. Res. Lett. 1976, 3, 26–28. [Google Scholar] [CrossRef]
- Price, J.C. Thermal Inertia Mapping: A New View of the Earth. J. Geophys. Res. 1977, 82, 2582–2590. [Google Scholar] [CrossRef]
- Carlson, T.N.; Dodd, J.K.; Benjamin, S.G.; Cooper, J.N. Satellite Estimation of the Surface Energy Balance, Moisture Availability and Thermal Inertia. J. Appl. Meteorol. Climatol. 1981, 20, 67–87. [Google Scholar] [CrossRef]
- Watson, K. Regional Thermal-inertia Mapping from an Experimental Satellite. Geophysics 1982, 47, 1681–1687. [Google Scholar] [CrossRef]
- Minacapilli, M.; Iovino, M.; Blanda, F. High Resolution Remote Estimation of Soil Surface Water Content by a Thermal Inertia Approach. J. Hydrol. 2009, 379, 229–238. [Google Scholar] [CrossRef]
- Maltese, A.; Bates, P.D.; Capodici, F.; Cannarozzo, M.; Ciraolo, G.; La Loggia, G. Critical Analysis of Thermal Inertia Approaches for Surface Soil Water Content Retrieval. Hydrol. Sci. J. 2013, 58, 1144–1161. [Google Scholar] [CrossRef]
- Carlson, T.N. Regional-scale Estimates of Surface Moisture Availability and Thermal Inertia Using Remote Thermal Measurements. Remote Sens. Rev. 1986, 1, 197–247. [Google Scholar] [CrossRef]
- Kahle, A.B. A Simple Thermal Model of the Earths Surface for Geologic Mapping by Remote Sensing. J. Geophys. Res. 1977, 82, 1673–1680. [Google Scholar] [CrossRef]
- Ghilain, N.; Arboleda, A.; Batelaan, O.; Ardö, J.; Trigo, I.; Barrios, J.-M.; Gellens-Meulenberghs, F. A New Retrieval Algorithm for Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation. Remote Sens. 2019, 11, 1968. [Google Scholar] [CrossRef]
- van de Griend, A.A.; Owe, M. On the Relationship between Thermal Emissivity and the Normalized Difference Vegetation Index for Natural Surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Coppola, A.; Basile, A.; Menenti, M.; Buonannno, M.; Colin, J.; Mascellis, R.D.; Esposito, M.; Lazzaro, U.; Magliulo, V.; Manna, P. Spatial distribution and structure of remotely sensed surface water content estimated by a thermal inertia approach. In Remote Sensing for Environmental Monitoring and Change Detection; Owe, M., Neale, C., Eds.; IAHS Publisher: Wallingford, UK, 2007; Volume 316, pp. 1–12. [Google Scholar]
- Soliman, A.; Heck, R.; Brenning, A.; Brown, R.; Miller, S. Remote Sensing of Soil Moisture in Vineyards Using Airborne and Ground-Based Thermal Inertia Data. Remote Sens. 2013, 5, 3729–3748. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry. J. Surv. Eng. 2017, 143, 04016025. [Google Scholar] [CrossRef]
- Seo, M.-G.; Shin, H.-S.; Tsourdos, A. Soil Moisture Retrieval from Airborne Multispectral and Infrared Images Using Convolutional Neural Network. IFAC-PapersOnLine 2020, 53, 15852–15857. [Google Scholar] [CrossRef]
- Zhuang, R.; Manfreda, S.; Zeng, Y.; Su, Z.; Ben Dor, E.; Petropoulos, G.P. Soil Moisture Monitoring Using Unmanned Aerial System. In Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments; Elsevier: Amsterdam, The Netherlands, 2023; pp. 179–200. ISBN 978-0-323-85283-8. [Google Scholar]
- ASTM DD1556/D1556M-15; Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method. ASTM International: West Conshohocken, PA, USA, 2007. Available online: https://webstore.ansi.org/standards/astm/astmd1556d1556m15 (accessed on 6 January 2018).
- Klute, A.; Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In SSSA Book Series: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods; ASA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Norouzi, S.; Sadeghi, M.; Liaghat, A.; Tuller, M.; Jones, S.B.; Ebrahimian, H. Information Depth of NIR/SWIR Soil Reflectance Spectroscopy. Remote Sens. Environ. 2021, 256, 112315. [Google Scholar] [CrossRef]
- ASTM D2419-14; Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2014. Available online: https://webstore.ansi.org/standards/astm/astmd241914 (accessed on 6 January 2018).
- ASTM D2216-19; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d2216-19.html (accessed on 6 January 2024).
- Idso, S.B.; Jackson, R.D.; Reginato, R.J. Compensating for Environmental Variability in the Thermal Inertia Approach to Remote Sensing of Soil Moisture. J. Appl. Meteorol. 1976, 15, 811–817. [Google Scholar] [CrossRef]
- Menenti, M. Physical Aspects and Determination of Evaporation in Deserts Applying Remote Sensing Techniques; EV: Wageningen, The Netherlands, 1984. [Google Scholar]
- Bastiaanssen, W. SEBAL-Based Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Cuenca, R.; Ciotti, S.; Hagimoto, Y. Application of Landsat to Evaluate Effects of Irrigation Forbearance. Remote Sens. 2013, 5, 3776–3802. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Santanello, J.A.; Friedl, M.A. Diurnal Covariation in Soil Heat Flux and Net Radiation. J. Appl. Meteorol. 2003, 42, 851–862. [Google Scholar] [CrossRef]
- Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T. Estimating Evaporation with Thermal UAV Data and Two-Source Energy Balance Models. Hydrol. Earth Syst. Sci. 2016, 20, 697–713. [Google Scholar] [CrossRef]
- Melesse, A.M. Spatiotemporal Dynamics of Land Surface Parameters in the Red River of the North Basin. Phys. Chem. Earth Parts A/B/C 2004, 29, 795–810. [Google Scholar] [CrossRef]
- Liang, S. Quantitative Remote Sensing of Land Surfaces; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Campbell, G.S.; Norman, J.M. Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Brutsaert, W. On a Derivable Formula for Long-wave Radiation from Clear Skies. Water Resour. Res. 1975, 11, 742–744. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill Professional: New York, NY, USA, 2013. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: London, UK, 1959. [Google Scholar]
- Vries, D.A. Thermal Properties of Soils. In Physics of Plant Environment; US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1963; pp. 210–235. [Google Scholar]
- Johansen, O. Thermal Conductivity of Soils. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 1975. [Google Scholar]
- Lu, S.; Ren, T.; Gong, Y.; Horton, R. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Sci. Soc. Am. J. 2007, 71, 8. [Google Scholar] [CrossRef]
- Frodella, W.; Lazzeri, G.; Moretti, S.; Keizer, J.; Verheijen, F.G.A. Applying Infrared Thermography to Soil Surface Temperature Monitoring: Case Study of a High-Resolution 48 h Survey in a Vineyard (Anadia, Portugal). Sensors 2020, 20, 2444. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Kustas, W.P.; Weltz, M.A. Simulating Surface Energy Fluxes and Radiometric Surface Temperatures for Two Arid Vegetation Communities Using the SHAW Model. J. Appl. Meteorol. Climatol. 1998, 37, 449–460. [Google Scholar] [CrossRef]
- Murphy, J.A. Best Management Practices for Irrigating Golf Course Turf. In Best Management Practices for Irrigating Golf Course Turf, Rutgers Cooperative Extension; Rutgers NJAES Cooperative Extension: New Brunswick, NJ, USA, 2002. [Google Scholar]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Bertalan, L.; Holb, I.; Pataki, A.; Négyesi, G.; Szabó, G.; Kupásné Szalóki, A.; Szabó, S. UAV-Based Multispectral and Thermal Cameras to Predict Soil Water Content—A Machine Learning Approach. Comput. Electron. Agric. 2022, 200, 107262. [Google Scholar] [CrossRef]
- Araya, S.N.; Fryjoff-Hung, A.; Anderson, A.; Viers, J.H.; Ghezzehei, T.A. Advances in Soil Moisture Retrieval from Multispectral Remote Sensing Using Unoccupied Aircraft Systems and Machine Learning Techniques. Hydrol. Earth Syst. Sci. 2021, 25, 2739–2758. [Google Scholar] [CrossRef]
- Lv, M.; Yang, Z.; Xu, Z.; Dan, L.; Lv, M.; Zheng, H. A Soil Moisture-Dependent Model to Simulate Water Table Depth and Proportions of Surface and Subsurface Runoff and Its Validation at the Basin Scale. JGR Atmos. 2021, 126, 2020JD033661. [Google Scholar] [CrossRef]
Brand | Model | Sensor | Resolution | Name | Symbol | Bandwidth | Wavelength (µm) |
---|---|---|---|---|---|---|---|
FLIR | Vue Pro R | Thermal | 640 × 512 | Thermal | ρ6 | Broad | 7.5–13.5 |
Micasense | RedEdgeTM | Multi-spectral | 1280 × 960 | Near Infrared | ρ5 | Narrow | 0.820–0.860 |
Red Edge | ρ4 | 0.712–0.722 | |||||
Red | ρ3 | 0.663–0.673 | |||||
Green | ρ2 | 0.550–0.570 | |||||
Blue | ρ1 | 0.465–0.485 | |||||
Sony | α6000 | Optical | 6000 × 4000 | Red | - | Broad | 0.63–0.69 |
Green | - | 0.52–0.60 | |||||
Blue | - | 0.45–0.52 |
Date | Solar Noon CDT | Air Temperature °C | Dew Pt. °C | Humidity | φ rad | Wind Speed kts | Sky and Visibility km |
---|---|---|---|---|---|---|---|
12 October 2017 | 13:14 | 28.1 | 12.5 | 40% | 0.866 | 5 | Clear and >10 |
17 October 2017 | 13:13 | 23.9 | 12.2 | 38% | 0.833 | 8 | |
18 October 2017 | 13:13 | 25.6 | 6.7 | 37% | 0.827 | 11 | |
25 October 2017 | 13:12 | 22.8 | 7.2 | 18% | 0.784 | 8 | |
29 October 2017 | 13:12 | 23.0 | 3.3 | 14% | 0.723 | 12 | |
30 October 2017 | 13:12 | 22.2 | 33.8 | 28% | 0.760 | 3 |
Step | Symbol | Name | Unit | Equation | EQs No. |
---|---|---|---|---|---|
1. | P | thermal inertia | J m−2 K−1 s−1/2 | P = (2 ∆G)/(∆Ts ω−1/2) | 1 |
1. | G | ground heat flux | W m−2 | G = Rn{A cos [2π(t + 10 800)/B)]} | 2 |
1. | A | maximum G/Rn | - | A = 0.0074 ∆Ts + 0.088 | 3 |
1. | B | phase correction | s | B = 1729 ΔTs + 65,013 | 4 |
1. | Rn | net radiation | W m−2 | Rn = RS↓ − ∝ RS↓ + RL↓ − RL↑ − (1 − εs) RL↓ | 5 |
1. | ∝ | albedo | - | α ≃ | 6 |
1. | weighting factors | - | 7 | ||
2. | RL↑ | outgoing longwave radiation | W m−2 | RL↑ = εs σ Ts4 | 8 |
2. | RL↓ | incoming longwave radiation | W m−2 | RL↓ = εa σ Ta4 | 9 |
2. | εa | atmospheric emissivity | - | εa = 1.24(/Ta)0.14286 | 10 |
2. | εs | surface emissivity | - | εs = 1.009 + 0.047 ln(NDVI) | 11 |
2. | actual vapor pressure | mb | = 6.11exp[17.27Td/(237.3 + Td) | 12 | |
2. | NDVI | normalized difference vegetation index | - | NDVI = (NIR − red)/(NIR + red) | 13 |
3. | P | thermal inertia | J m−2 K−1 s−1/2 | P = (λ ρbC)−1/2 | 14 |
3. | ρbC | soil heat capacity | J m−3 K−1 | ρbC = ρbd Cs + θ ρw Cw | 15 |
3. | λ | soil thermal conductivity | W m−1 K−1 | λ = Ke(λsat − λdry) + λdry | 16 |
3. | Ke | Kersten number | - | Ke = exp{γ[1 − (θ/θs)γ − δ]} | 17 |
3. | γ | texture parameter | - | γ = 0.96 (fs > 0.40) γ = 0.27 (fs ≤ 0.40) | 18 |
where | Value/Source | ||||
δ | shape parameter | - | 1.33 | ||
ρw | density of water | kg m−3 | ~998 | ||
Cw | liquid phase heat capacity | J kg−1 K−1 | 4184 | ||
Cs | solid phase heat capacity | J kg−1 K−1 | KD2 Pro/SH-1 | ||
γ | texture parameter | - | Klute et al. 1986 [40] | ||
fs | sand fraction | - | Soil analysis based on (ASTM D2419-14) [42] | ||
λ | saturated thermal conductivity | W m−1 K−1 | KD2 Pro/TR-1 | ||
λ | air-dry thermal conductivity | W m−1 K−1 | KD2 Pro/TR-1 | ||
θ | volumetric saturated SWC | m3 m−3 | Soil analysis based on (ASTM D2216-19) [43] | ||
θ | actual volumetric SWC | m3 m−3 | TDR | ||
ρ | dry bulk density of soil | kg m−3 | Soil analysis based on (ASTM D1556/D1556M) [39] | ||
r1 | blue absolute reflectance | - | RedEdgeTM | ||
r2 | green absolute reflectance | - | RedEdgeTM | ||
r3 | red absolute reflectance | - | RedEdgeTM | ||
r4 | red edge absolute reflectance | - | RedEdgeTM | ||
r5 | near infrared absolute reflectance | - | RedEdgeTM | ||
TIR | thermal infrared radiation | °C | FLIR Vue Pro R | ||
∆T | LST difference | °C | FLIR Vue Pro R | ||
Ta | air temperature | °C | NOAA | ||
d | Earth–Sun distance | AU | NASA | ||
ω | radial frequency (24-h) | rad s−1 | 2π/86 400 s | ||
σ | Stefan–Boltzmann constant | W m−2 K−4 | 5.67 × 10−8 | ||
Gsc | solar constant | W m−2 | 1370 | ||
φ | solar zenith angle | ° | NOAA | ||
z | elevation (msl) | m | GPS |
Date | * Ts (°C) | NDVI (-) | α (-) | εs (-) | G (W m−2) | Prs (J m−2 K−1 s−1/2) | θrs (m3 m−3) |
---|---|---|---|---|---|---|---|
12 October 2017 | 27.58 | 0.61 | 0.26 | 0.99 | 48.16 | 1332.72 | 28.47 |
17 October 2017 | 26.49 | 0.61 | 0.26 | 0.98 | 39.05 | 1354.03 | 29.59 |
18 October 2017 | 28.96 | 0.60 | 0.27 | 0.99 | 38.75 | 1383.56 | 31.17 |
25 October 2017 | 27.34 | 0.59 | 0.27 | 0.98 | 40.07 | 1332.91 | 28.48 |
29 October 2017 | 24.84 | 0.59 | 0.28 | 0.98 | 47.51 | 1319.83 | 27.80 |
30 October 2017 | 24.69 | 0.59 | 0.28 | 0.98 | 62.02 | 1308.76 | 27.23 |
Date | Event | MIN (m3 m−3) | MAX (m3 m−3) | AVG (m3 m−3) | STD DEV (m3 m−3) |
---|---|---|---|---|---|
12 October 2017 | 1st | 0.1440 | 0.5984 | 0.2887 | 0.0730 |
17 October 2017 | 2nd | 0.1265 | 0.5496 | 0.2918 | 0.1037 |
18 October 2017 | 3rd | 0.1195 | 0.5836 | 0.3197 | 0.1354 |
25 October 2017 | 4th | 0.1350 | 0.5677 | 0.3343 | 0.1007 |
29 October 2017 | 5th | 0.1075 | 0.5270 | 0.2448 | 0.0770 |
30 October 2017 | 6th | 0.1335 | 0.5520 | 0.2452 | 0.0700 |
Average | 0.1277 | 0.5630 | 0.2874 | 0.0933 |
Date | # of TDR Measurements | r | R2 | RMSE | MAE |
---|---|---|---|---|---|
12 October 2017 | 194 | 0.8281 | 0.6858 | 0.0414 | 0.0331 |
17 October 2017 | 100 | 0.8856 | 0.7843 | 0.0522 | 0.0427 |
18 October 2017 | 116 | 0.9088 | 0.8260 | 0.0557 | 0.0416 |
25 October 2017 | 55 | 0.8924 | 0.7963 | 0.0536 | 0.0449 |
29 October 2017 | 518 | 0.8691 | 0.7553 | 0.0351 | 0.0261 |
30 October 2017 | 317 | 0.8174 | 0.6681 | 0.0357 | 0.0267 |
Total | 1300 | 0.8863 | 0.7855 | 0.0408 | 0.0308 |
Date | # of TDR Measurements | r | R2 | RMSE |
---|---|---|---|---|
Sand | 122 | 0.7564 | 0.5721 | 0.0447 |
Loamy Sand | 841 | 0.8782 | 0.7712 | 0.0415 |
Sandy Loam | 15 | 0.8639 | 0.7463 | 0.0555 |
Silty Clay Loam | 322 | 0.8973 | 0.8052 | 0.0361 |
Date | Total TDR Samples | Min | Max | Range | Mean | Median | Std. Dev. |
---|---|---|---|---|---|---|---|
12 October 2017 | 194 | −0.0891 | 0.1082 | 0.1973 | −0.0019 | 0.2835 | 0.0415 |
17 October 2017 | 100 | −0.0976 | 0.1225 | 0.2201 | 0.0239 | 0.0255 | 0.0467 |
18 October 2017 | 116 | −0.166 | 0.1741 | 0.3401 | 0.0203 | 0.0188 | 0.0521 |
25 October 2017 | 55 | 0.1371 | 0.0847 | 0.2218 | −0.0147 | −0.0250 | 0.0520 |
29 October 2017 | 518 | −0.0956 | 0.1391 | 0.2347 | 0.0101 | 0.0075 | 0.0337 |
30 October 2017 | 317 | −0.0936 | 0.1042 | 0.1978 | 0.0117 | 0.0078 | 0.0338 |
Total | 1300 | −0.1660 | 0.1741 | 0.3401 | 0.0097 | 0.0075 | 0.0397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wienhold, K.J.; Li, D.; Fang, Z.N. Precision Irrigation Soil Moisture Mapper: A Thermal Inertia Approach to Estimating Volumetric Soil Water Content Using Unmanned Aerial Vehicles and Multispectral Imagery. Remote Sens. 2024, 16, 1660. https://doi.org/10.3390/rs16101660
Wienhold KJ, Li D, Fang ZN. Precision Irrigation Soil Moisture Mapper: A Thermal Inertia Approach to Estimating Volumetric Soil Water Content Using Unmanned Aerial Vehicles and Multispectral Imagery. Remote Sensing. 2024; 16(10):1660. https://doi.org/10.3390/rs16101660
Chicago/Turabian StyleWienhold, Kevin J., Dongfeng Li, and Zheng N. Fang. 2024. "Precision Irrigation Soil Moisture Mapper: A Thermal Inertia Approach to Estimating Volumetric Soil Water Content Using Unmanned Aerial Vehicles and Multispectral Imagery" Remote Sensing 16, no. 10: 1660. https://doi.org/10.3390/rs16101660
APA StyleWienhold, K. J., Li, D., & Fang, Z. N. (2024). Precision Irrigation Soil Moisture Mapper: A Thermal Inertia Approach to Estimating Volumetric Soil Water Content Using Unmanned Aerial Vehicles and Multispectral Imagery. Remote Sensing, 16(10), 1660. https://doi.org/10.3390/rs16101660