Empirical Analysis of a Super-SBM-Based Framework for Wetland Carbon Stock Safety Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Field Sampling Data
2.2.2. Remote Sensing Data
2.2.3. Input–Output Indicators for the Super-SBM
2.3. Methods
2.3.1. Carbon Stock Estimation
2.3.2. ML-Based Methods
2.3.3. Super-SBM Model
2.3.4. Safety Assessment Framework
3. Results
3.1. Exploratory Data Analysis
3.2. Wetland Carbon Stock Estimates
3.3. Carbon Stock Variation in QBWE
3.3.1. Trends
3.3.2. Spatial Distributions of and Changes in Wetland Carbon Stocks
3.4. Carbon Stock Security and Optimization Strategies
3.4.1. Carbon Stock Safety Assessments
3.4.2. Analysis of Optimization Strategies Based on Slack Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Temmink, R.J.; Lamers, L.P.; Angelini, C.; Bouma, T.J.; Fritz, C.; van de Koppel, J.; Lexmond, R.; Rietkerk, M.; Silliman, B.R.; Joosten, H.; et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 2022, 376, eabn1479. [Google Scholar] [CrossRef]
- Tillman, S.C.; Matthews, J.W. Evaluating the ability of wetland mitigation banks to replace plant species lost from destroyed wetlands. J. Appl. Ecol. 2023, 60, 990–998. [Google Scholar] [CrossRef]
- Ye, S.; Pei, L.; He, L.; Xie, L.; Zhao, G.; Yuan, H.; Ding, X.; Pei, S.; Yang, S.; Li, X.; et al. Wetlands in China: Evolution, carbon sequestrations and services, threats, and preservation/restoration. Water 2022, 14, 1152. [Google Scholar] [CrossRef]
- Ren, Y.; Mao, D.; Wang, Z.; Yu, Z.; Xu, X.; Huang, Y.; Xi, Y.; Luo, L.; Jia, M.; Song, K.; et al. China’s wetland soil organic carbon pool: New estimation on pool size, change, and trajectory. Glob. Chang. Biol. 2023, 29, 6139–6156. [Google Scholar] [CrossRef]
- Wang, N.; Chen, X.; Zhang, Z.; Pang, J. Spatiotemporal dynamics and driving factors of county-level carbon storage in the Loess Plateau: A case study in Qingcheng County, China. Ecol. Indic. 2022, 144, 109460. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Brisbane, S.; Hagger, V.; Smith, C.S.; Wilson, K.A.; Lovelock, C.E.; Gillies, C.; Steven, A.D.; Saunders, M.I. Priorities and motivations of marine coastal restoration research. Front. Mar. Sci. 2020, 7, 484. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Tang, S.; Liu, J. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai–Tibet Plateau. Catena 2016, 144, 102–108. [Google Scholar] [CrossRef]
- Naidoo, L.; Van Deventer, H.; Ramoelo, A.; Mathieu, R.; Nondlazi, B.; Gangat, R. Estimating above ground biomass as an indicator of carbon storage in vegetated wetlands of the grassland biome of South Africa. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 118–129. [Google Scholar] [CrossRef]
- Lumbierres, M.; Méndez, P.F.; Bustamante, J.; Soriguer, R.; Santamaría, L. Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology. Remote Sens. 2017, 9, 392. [Google Scholar] [CrossRef]
- Jensen, D.; Cavanaugh, K.C.; Simard, M.; Okin, G.S.; Castañeda-Moya, E.; McCall, A.; Twilley, R.R. Integrating imaging spectrometer and synthetic aperture radar data for estimating wetland vegetation aboveground biomass in coastal Louisiana. Remote Sens. 2019, 11, 2533. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R. Modelling soil organic carbon stock distribution across different land-uses in South Africa: A remote sensing and deep learning approach. ISPRS J. Photogramm. Remote Sens. 2022, 188, 351–362. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Gong, J.; Li, S.; Dou, H.; Dang, D.; Xuan, X.; Wang, H. Remote-sensing inversion method for aboveground biomass of typical steppe in Inner Mongolia, China. Ecol. Indic. 2021, 120, 106883. [Google Scholar] [CrossRef]
- Quang, N.H.; Quinn, C.H.; Carrie, R.; Stringer, L.C.; Hackney, C.R.; Van Tan, D. Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam. Remote Sens. Appl. Soc. Environ. 2022, 26, 100725. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.; Ren, G.; Wang, J. Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network. Remote Sens. Environ. 2022, 270, 112885. [Google Scholar] [CrossRef]
- Zhang, D.; Ni, H. Inversion of Forest Biomass Based on Multi-Source Remote Sensing Images. Sensors 2023, 23, 9313. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, W.; Ji, Y.; Huang, J.; Huang, G.; Wang, L. Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms. Front. Plant Sci. 2023, 14, 1258521. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Xu, W. Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sens. 2021, 13, 1595. [Google Scholar] [CrossRef]
- Lamlom, S.H.; Savidge, R.A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Bitunjac, D.; Sever, M.Z.O.; Sever, K.; Merganičová, K.; Marjanović, H. Dead wood volume-to-carbon conversion factors by decay class for ten tree species in Croatia and eight tree genera globally. For. Ecol. Manag. 2023, 549, 121431. [Google Scholar] [CrossRef]
- Sanders, C.J.; Maher, D.T.; Tait, D.R.; Williams, D.; Holloway, C.; Sippo, J.Z.; Santos, I.R. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosciences 2016, 121, 2600–2609. [Google Scholar] [CrossRef]
- Mei, W.; Yin, Q.; Tian, X.; Fu, X.; Guan, Y.; Wang, L. Optimization of plant harvest and management patterns to enhance the carbon sink of reclaimed wetland in the Yangtze River estuary. J. Environ. Manag. 2022, 312, 114954. [Google Scholar] [CrossRef]
- Zhang, R.P.; Zhou, J.H.; Guo, J.; Miao, Y.H.; Zhang, L.L. Inversion models of aboveground grassland biomass in Xinjiang based on multisource data. Front. Plant Sci. 2023, 14, 1152432. [Google Scholar] [CrossRef]
- Wang, B.; Mu, C.; Lu, H.; Li, N.; Zhang, Y.; Ma, L. Ecosystem carbon storage and sink/source of temperate forested wetlands in Xiaoxing’anling, northeast China. J. For. Res. 2022, 33, 839–849. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Zhang, S.; Wang, W. Dynamic identification and health assessment of wetlands in the middle reaches of the Yangtze River basin under changing environment. J. Clean. Prod. 2022, 345, 131105. [Google Scholar] [CrossRef]
- Chen, W.; Cao, C.; Liu, D.; Tian, R.; Wu, C.; Wang, Y.; Qian, Y.; Ma, G.; Bao, D. An evaluating system for wetland ecological health: Case study on nineteen major wetlands in Beijing-Tianjin-Hebei region, China. Sci. Total Environ. 2019, 666, 1080–1088. [Google Scholar] [CrossRef]
- Sun, C.; Tong, Y.; Zou, W. The evolution and a temporal-spatial difference analysis of green development in China. Sustain. Cities Soc. 2018, 41, 52–61. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Pittman, R.W. Multilateral productivity comparisons with undesirable outputs. Econ. J. 1983, 93, 883–891. [Google Scholar] [CrossRef]
- Lee, H.S. Integrating SBM model and Super-SBM model: A one-model approach. Omega 2022, 113, 102693. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef]
- Du, Y.W.; Jiang, J.; Li, C.H. Ecological efficiency evaluation of marine ranching based on the Super-SBM model: A case study of Shandong. Ecol. Indic. 2021, 131, 108174. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Miao, J. Unearthing marine ecological efficiency and technology gap of China’s coastal regions: A global meta-frontier super SBM approach. Ecol. Indic. 2023, 147, 109994. [Google Scholar] [CrossRef]
- Hong, Y.; Que, X.; Wang, Z.; Ma, X.; Wang, H.; Salati, S.; Liu, J. Mangrove extraction from super-resolution images generated by deep learning models. Ecol. Indic. 2024, 159, 111714. [Google Scholar] [CrossRef]
- Lu, D.; Guo, P.; Ji, J.; Liu, L.; Yang, P. Evaluation of phosphorus distribution and bioavailability in sediments of a subtropical wetland reserve in southeast China. Ecol. Indic. 2016, 66, 556–563. [Google Scholar] [CrossRef]
- Lu, C.; Liu, J.; Jia, M.; Liu, M.; Man, W.; Fu, W.; Zhong, L.; Lin, X.; Su, Y.; Gao, Y. Dynamic analysis of mangrove forests based on an optimal segmentation scale model and multi-seasonal images in Quanzhou Bay, China. Remote Sens. 2018, 10, 2020. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Q.; Wang, G.; Lin, H.; Luo, P.; Li, J.; Zeng, S.; Xu, X.; Ren, L. Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images. Remote Sens. 2018, 10, 1248. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, X.; Braswell, B.; Zhang, Q.; Boles, S.; Frolking, S.; Moore, B., III. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia. Remote Sens. Environ. 2003, 84, 385–392. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Chen, Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. Environ. 1987, 23, 213-IN8. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Löfstedt, T.; Brynolfsson, P.; Asklund, T.; Nyholm, T.; Garpebring, A. Gray-level invariant Haralick texture features. PLoS ONE 2019, 14, e0212110. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Olson, J.S. Carbon in Live Vegetation of Major World Ecosystems; US Department of Energy: Washington, DC, USA, 1983. [Google Scholar]
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Yao, X.; Xie, S.; Liu, Y.; Sheng, Y.; Luan, Z. Carbon Storage Estimation of Coastal Wetlands in China. Acta Pedofil. Sin. 2022, 60, 800–814. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wong, Y.S.; Lan, C.Y.; Chen, G.Z. Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. In Asia-Pacific Symposium on Mangrove Ecosystems; Wong, Y.S., Tam, N.F.Y., Eds.; Developments in Hydrobiology; Springer: Dordrecht, The Netherlands, 1995; Volume 106. [Google Scholar] [CrossRef]
- Jin, C.; Wang, J.W.; Zheng, J.; Chen, Q.X.; Li, J.Q.; Lu, X. An assessment method of Kandelia obovata population biomass. Acta Ecol. Sin. 2012, 32, 3414–3422. [Google Scholar] [CrossRef]
- Comley, B.W.; McGuinness, K.A. Above-and below-ground biomass, and allometry, of four common northern Australian mangroves. Aust. J. Bot. 2005, 53, 431–436. [Google Scholar] [CrossRef]
- Quinlan, J.R. Generating Production Rules from Decision Trees. In Ijcai. 1987, August; Volume 87, pp. 304–307. Available online: https://www.ijcai.org/Proceedings/87-1/Papers/063.pdf (accessed on 30 April 2024).
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Z.; Cheng, Y.; Borjigin, S.; Quan, Z. Grassland biomass spatiotemporal patterns and response to climate change in eastern Inner Mongolia based on XGBoost model estimates. Ecol. Indic. 2024, 158, 111554. [Google Scholar] [CrossRef]
- Liao, Z.; He, B.; Quan, X. Potential of texture from SAR tomographic images for forest aboveground biomass estimation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102049. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, W.; Peng, K.; Wu, Z.; Ling, Z.; Li, Z. Assessment of the impact of wetland changes on carbon storage in coastal urban agglomerations from 1990 to 2035 in support of SDG15. 1. Sci. Total Environ. 2023, 877, 162824. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ni, M.; Cai, M.; Wang, J.; Huang, D.; Chen, H.; Wang, X.; Liu, M. Optimization of a coastal environmental monitoring network based on the kriging method: A case study of Quanzhou Bay, China. BioMed Res. Int. 2016, 2016, 7137310. [Google Scholar] [CrossRef]
- Li, H.; Mao, D.; Wang, Z.; Huang, X.; Li, L.; Jia, M. Invasion of Spartina alterniflora in the coastal zone of mainland China: Control achievements from 2015 to 2020 towards the Sustainable Development Goals. J. Environ. Manag. 2022, 323, 116242. [Google Scholar] [CrossRef]
- Fanfei, H.; Lili, T.; Ruili, L. Analysis of Ecological Benefits of Mangrove Protection and Restoration Measures in the Mainland of China in the Past 40 Years. Beijing Da Xue Xue Bao 2023, 59, 813–822. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, O.J.; Xu, H. A comparison of species composition and stand structure between planted and natural mangrove forests in Shenzhen Bay, South China. J. Plant Ecol. 2010, 3, 165–174. [Google Scholar] [CrossRef]
- Yan, J.Y.; He, D.J.; Li, X.J.; Wang, R.; Cai, J.B.; You, W.B.; Su, S.C.; Zhang, Z.R.; Xiao, S.H. Comparative studies on the carbon storage between the Kandelia candel natural forests and plantations in north mangrove forests of China. Chin. J. Trop. Crops 2013, 34, 1395–1401. [Google Scholar]
- Uniyal, S.; Purohit, S.; Chaurasia, K.; Rao, S.S.; Amminedu, E. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India. Urban For. Urban Green. 2022, 67, 127445. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.; Xie, L.; Nie, X.; Wang, Z.; Du, Z.; Yue, T. Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling. Ecol. Indic. 2021, 121, 107215. [Google Scholar] [CrossRef]
- Bui, Q.T.; Pham, Q.T.; Pham, V.M.; Tran, V.T.; Nguyen, D.H.; Nguyen, Q.H.; Nguyen, H.D.; Do, N.T.; Vu, V.M. Hybrid machine learning models for aboveground biomass estimations. Ecol. Inform. 2024, 79, 102421. [Google Scholar] [CrossRef]
- Ayushi, K.; Babu, K.N.; Ayyappan, N.; Nair, J.R.; Kakkara, A.; Reddy, C.S. A comparative analysis of machine learning techniques for aboveground biomass estimation: A case study of the Western Ghats, India. Ecol. Inform. 2024, 80, 102479. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Bai, J.; Meng, Y.; Gou, R.; Lyu, J.; Dai, Z.; Diao, X.; Zhang, H.; Luo, Y.; Zhu, X.; Lin, G. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol. 2021, 35, 774–786. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Que, X.; Ma, X.; Ma, C.; Chen, Q. A spatiotemporal weighted regression model (STWR v1. 0) for analyzing local nonstationarity in space and time. Geosci. Model Dev. 2020, 13, 6149–6164. [Google Scholar] [CrossRef]
- Que, X.; Zhuang, X.; Ma, X.; Lai, Y.; Xie, J.; Fei, T.; Wang, H.; Yuming, W.U. Modeling the spatiotemporal heterogeneity and changes of slope stability in rainfall-induced landslide areas. Earth Sci. Inform. 2024, 17, 51–61. [Google Scholar] [CrossRef]
- Fan, J.; Wang, J.; Liu, M.; Sun, W.; Lan, Z. Scenario simulations of China’s natural gas consumption under the dual-carbon target. Energy 2022, 252, 124106. [Google Scholar] [CrossRef]
Features | Algorithms/Definitions | Descriptions |
---|---|---|
Spectral bands | Original band reflectance of Sentinel-2. B2, B3, and B4 are visible light bands of blue, green, and red, respectively; B5, B6, and B7 are vegetation red-edge bands; B8 and B8a are near-infrared bands; and B11 and B12 are short-wave infrared bands. https://sentinel.esa.int/web/sentinel/missions/sentinel-2 | |
Vegetation indices | Normalized difference vegetation index [41] | |
Enhanced vegetation index [42] | ||
Difference vegetation index [43] | ||
Ratio vegetation index [44] | ||
Soil-adjusted vegetation index [45] | ||
Texture features | The Haralick texture feature [46] variables were calculated using the 10 m B2, B3, B4, and B8 bands of Sentinel-2. is the pixel of the GLCM (gray level co-occurrence matrix), and and are the mean and variance values of the GLCM. Then, the texture feature variables are the co-occurrence measure mean (CMM); co-occurrence measure variance (CMV); co-occurrence measure homogeneity (CMH); co-occurrence measure contrast (CMC); co-occurrence measure dissimilarity (CMD); co-occurrence measure entropy (CME); co-occurrence measure second moment (CMSM); and co-occurrence measure correlation (CMCO) [47]. | |
Inputs and Outputs | Indicators | Descriptions and Sources | |
---|---|---|---|
Level 1 | Level 2 | ||
Inputs | Climate conditions | TEMP | Temperature (°C), NCEI (https://www.ncei.noaa.gov (accessed on 8 May 2023)) |
PREC | Precipitation (mm), NCEI (https://www.ncei.noaa.gov (accessed on 8 May 2023)) | ||
Environmental governance investigations | EP | Environmental protection investment (CNY million), Quanzhou Statistical Yearbook (https://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj (accessed on 7 May 2023)) | |
TI | Technology investment (CNY million), accounts of the Quanzhou Bay Estuary Wetland Nature Reserve Development Center (http://lyj.quanzhou.gov.cn (accessed on 7 May 2023)) | ||
Socio-economic activities | PD | Population density (cap/km2), Quanzhou Statistical Yearbook (https://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj (accessed on 7 May 2023)) | |
URB | Urbanization level (%), Quanzhou Statistical Yearbook (https://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj (accessed on 7 May 2023)) | ||
Resource utilization | FOV | Fishery output value (CNY million), Quanzhou Statistical Yearbook (https://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj (accessed on 7 May 2023)) | |
UP | Unit power consumption (kwh/CNY million), Quanzhou Statistical Yearbook (https://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj (accessed on 7 May 2023)) | ||
Expected outputs | Economic development | GDPPC | GDP per capita (CNY), Quanzhou Statistical Yearbook (https://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj (accessed on 7 May 2023)) |
Environmental improvement | CS | Carbon stocks (Mg/ha) | |
Unexpected outputs | Environment pollution | CE | Carbon emissions (10 kilotons) [48] |
Species | Allometric Equation | Source |
---|---|---|
Aegiceras corniculatum | [52] | |
Kandelia obovata | [53] | |
Avicennia marina | [54] | |
Tree Species | Number of Plants | Mean DBH (cm) | Mean Biomass (kg) | Mean Carbon Stock (kg) |
---|---|---|---|---|
Kandelia obovata | 2981 | 4.15 | 30.15 | 15.57 |
Aegiceras corniculatum | 1908 | 2.21 | 70.36 | 35.18 |
Avicennia marina | 76 | 2.28 | 5.10 | 2.55 |
Total | 4965 | 8.64 | 105.61 | 53.30 |
Model | R2 | MAE (kg) | RMSE (kg) |
---|---|---|---|
MLR | 0.57 | 14.96 | 30.46 |
RF | 0.77 | 16.41 | 17.77 |
XGBoost | 0.91 | 7.73 | 13.72 |
Year | Mean | Increment | S.D. | Fengze District | Hui’an County | Jinjiang City | Luojiang District |
---|---|---|---|---|---|---|---|
2015 | 0.2885 | - | 0.1925 | 0.3644 | 0.4002 | 0.0006 | 0.3887 |
2016 | 0.3785 | 0.0901 | 0.1601 | 0.4544 | 0.4346 | 0.1403 | 0.4848 |
2017 | 0.6288 | 0.2503 | 0.2628 | 1.0227 | 0.4855 | 0.5044 | 0.5026 |
2018 | 1.0071 | 0.3783 | 0.0133 | 1.0014 | 1.0000 | 1.0000 | 1.0271 |
2019 | 1.0093 | 0.0021 | 0.0129 | 1.0283 | 1.0049 | 1.0000 | 1.0038 |
2020 | 1.0025 | −0.0068 | 0.0024 | 1.0054 | 1.0012 | 1.0000 | 1.0035 |
2021 | 1.0089 | 0.0064 | 0.0059 | 1.0163 | 1.0045 | 1.0040 | 1.0109 |
2022 | 1.1507 | 0.1418 | 0.0855 | 1.0791 | 1.2219 | 1.0743 | 1.2274 |
Mean | - | - | - | 0.8715 | 0.8191 | 0.7154 | 0.8311 |
Input–Output Variables | Unit | Fengze District | Hui’an County | Jinjiang City | Luojiang District | |||||
---|---|---|---|---|---|---|---|---|---|---|
2015 | 2022 | 2015 | 2022 | 2015 | 2022 | 2015 | 2022 | |||
Inputs | TEMP | ℃ | 0.36 | 1.08 | 0.40 | 1.22 | 0 | 1.07 | 0.39 | 1.23 |
PREC | mm | −7.54 | 0 | −10.56 | 0.59 | −5.65 | 0 | −11.27 | 1.01 | |
EP | CNY million | −570.18 | 0 | −901.02 | 0 | −407.83 | 0 | −625.67 | 0 | |
TI | CNY million | 0 | 109.48 | −6728.79 | 0 | 0 | 0 | −1753.78 | 50.75 | |
PD | cap/km2 | −0.24 | 0 | −64.86 | 0 | 0 | 0 | −8.51 | 0 | |
URB | % | −1302.97 | 0 | −621.34 | 30.43 | 0 | 0 | −237.16 | 1.65 | |
FOV | CNY million | −35.27 | 0 | −26.08 | 1.18 | −3.50 | 0 | −22.58 | 0 | |
UP | kwh/CNY million | −2440.54 | 0 | −110,939.12 | 0 | −136,493.32 | 0 | −605.21 | 0 | |
Expected outputs | GDPPC | CNY | −0.03 | 0 | −0.04 | 0 | −0.04 | 0 | −0.03 | 0 |
CS | Mg | 0 | −244.53 | 0 | −74.12 | 0 | −320.92 | 0 | −54.17 | |
Unexpected output | CE | 10 kilotons | 19,329.19 | 0 | 96,287.92 | −402,960.10 | 83,148.16 | 0 | 22,888.37 | −61,776.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, Z.; Ma, X.; Zhao, J.; Que, X.; Liu, J.; Chen, R.; Li, Y. Empirical Analysis of a Super-SBM-Based Framework for Wetland Carbon Stock Safety Assessment. Remote Sens. 2024, 16, 1678. https://doi.org/10.3390/rs16101678
Chen L, Wang Z, Ma X, Zhao J, Que X, Liu J, Chen R, Li Y. Empirical Analysis of a Super-SBM-Based Framework for Wetland Carbon Stock Safety Assessment. Remote Sensing. 2024; 16(10):1678. https://doi.org/10.3390/rs16101678
Chicago/Turabian StyleChen, Lijie, Zhe Wang, Xiaogang Ma, Jingwen Zhao, Xiang Que, Jinfu Liu, Ruohai Chen, and Yimin Li. 2024. "Empirical Analysis of a Super-SBM-Based Framework for Wetland Carbon Stock Safety Assessment" Remote Sensing 16, no. 10: 1678. https://doi.org/10.3390/rs16101678
APA StyleChen, L., Wang, Z., Ma, X., Zhao, J., Que, X., Liu, J., Chen, R., & Li, Y. (2024). Empirical Analysis of a Super-SBM-Based Framework for Wetland Carbon Stock Safety Assessment. Remote Sensing, 16(10), 1678. https://doi.org/10.3390/rs16101678