A Novel Multi-Scale Feature Map Fusion for Oil Spill Detection of SAR Remote Sensing
Abstract
:1. Introduction
- We propose a novel network architecture which extends U-Net framework. By integrating different scale feature information generated at various stages of the decoder, the model effectively utilizes multi-stage contextual information, thereby significantly enhancing the accuracy of oil spill area identification in oil spill segmentation tasks.
- A multi-convolutional layer (MCL) module is introduced to extract crucial feature information from the input SAR image. By employing the MCL module, we utilize transpose convolution operations to increase the image dimensions. In contrast to regular convolution, the MCL enlarges the size of feature maps during the decoding phase and aids in recovering lost details and spatial resolution. Simultaneously, it effectively remaps abstract features from the encoder to the decoder, ensuring comprehensive and accurate feature representation.
- A feature extraction module (FEM) is carefully designed to integrate feature maps of varying scales. This module incorporates a channel attention mechanism that can adaptively adjust the weights of feature maps along the channel dimension. This process enhances the ability of the proposed model to understand information from different channels.
- We conduct extensive experiments on two distinct SAR datasets to verify the performance of the proposed model. And the results show that, compared to existing semantic segmentation networks, our proposed model achieves the current state-of-the-art performance.
2. Related Work
2.1. Traditional Image Processing Techniques
2.2. Advancements in Deep Learning Technologies
3. Methods
3.1. Overall Framework
3.2. Multi-Convolutional Layer Module
3.3. Feature Extraction Module
3.4. Loss Function
Algorithm 1 Training algorithm. |
Input SAR images and masks dataset D = repeat Sample ; ; ; Take a gradient descent step on ; until convergence |
4. Experimental Results and Analysis
4.1. Dataset
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Wan, J.; Liu, S.; Chen, Y.; Yasir, M.; Xu, M.; Ren, P. BO-DRNet: An improved deep learning model for oil spill detection by polarimetric features from SAR images. Remote Sens. 2022, 14, 264. [Google Scholar] [CrossRef]
- Naz, S.; Iqbal, M.F.; Mahmood, I.; Allam, M. Marine oil spill detection using synthetic aperture radar over indian ocean. Mar. Pollut. Bull. 2021, 162, 111921. [Google Scholar] [CrossRef] [PubMed]
- Mera, D.; Cotos, J.M.; Varela-Pet, J.; Garcia-Pineda, O. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula. Mar. Pollut. Bull. 2012, 64, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Wang, Y. A deep convolutional neural network for oil spill detection from spaceborne SAR images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef]
- Smith, L.C.; Smith, M.; Ashcroft, P. Analysis of environmental and economic damages from British Petroleum’s Deepwater Horizon oil spill. Albany Law Rev. 2011, 74, 563–585. [Google Scholar] [CrossRef]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil spill identification from satellite images using deep neural networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.; Miranda, G.V.; Mendonça, L.F.; Silva, M.A.; Porsani, M.J. Oil spill detection and mapping: A 50-year bibliometric analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Homayouni, S.; Mohammadimanesh, F.; Dabboor, M. Oil spill detection from Synthetic Aperture Radar Earth observations: A meta-analysis and comprehensive review. Gisci. Remote Sens. 2021, 58, 1022–1051. [Google Scholar] [CrossRef]
- Picou, J.S.; Gill, D.A.; Dyer, C.L.; Curry, E.W. Disruption and stress in an Alaskan fishing community: Initial and continuing impacts of the Exxon Valdez oil spill. Ind. Crisis Q. 1992, 6, 235–257. [Google Scholar] [CrossRef]
- Lopes, J.M.; Lentini, C.A.; Mendonça, L.F.; Lima, A.T.; Vasconcelos, R.N.; Silva, A.X.; Porsani, M.J. Absorbed dose rate for marine biota due to the oil spilled using ICRP reference animal and Monte Carlo simulation. Appl. Radiat. Isot. 2022, 188, 110354. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Law, R.J.; Kelly, C. The impact of the “Sea Empress” oil spill. Aquat. Living Resour. 2004, 17, 389–394. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Topouzelis, K.N. Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [PubMed]
- Solberg, A.H.S. Remote sensing of ocean oil-spill pollution. Proc. IEEE 2012, 100, 2931–2945. [Google Scholar] [CrossRef]
- Pisano, A.; De Dominicis, M.; Biamino, W.; Bignami, F.; Gherardi, S.; Colao, F.; Santoleri, R. An oceanographic survey for oil spill monitoring and model forecasting validation using remote sensing and in situ data in the Mediterranean Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2016, 133, 132–145. [Google Scholar] [CrossRef]
- Lu, J. Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia. Int. J. Remote Sens. 2003, 24, 3013–3032. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, F.; Zhao, D.; Wang, J. Oil spill monitoring based on SAR remote sensing imagery. Aquat. Procedia 2015, 3, 112–118. [Google Scholar] [CrossRef]
- Fustes, D.; Cantorna, D.; Dafonte, C.; Arcay, B.; Iglesias, A.; Manteiga, M. A cloud-integrated web platform for marine monitoring using GIS and remote sensing. Application to oil spill detection through SAR images. Future Gener. Comput. Syst. 2014, 34, 155–160. [Google Scholar] [CrossRef]
- Shi, H.; Liu, Y.; He, C.; Wang, C.; Li, Y.; Zhang, Y. Analysis of infrared polarization properties of targets with rough surfaces. Opt. Laser Technol. 2022, 151, 108069. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Y.; Yan, G.; Li, S. Study on the hyperspectral polarized reflection characteristics of oil slicks on sea surfaces. Chin. Sci. Bull. 2011, 56, 1596–1602. [Google Scholar] [CrossRef]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Ajadi, O.A.; Meyer, F.J.; Tello, M.; Ruello, G. Oil spill detection in synthetic aperture radar images using Lipschitz-regularity and multiscale techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2389–2405. [Google Scholar] [CrossRef]
- Fiscella, B.; Giancaspro, A.; Nirchio, F.; Pavese, P.; Trivero, P. Oil spill detection using marine SAR images. Int. J. Remote Sens. 2000, 21, 3561–3566. [Google Scholar] [CrossRef]
- Migliaccio, M.; Tranfaglia, M.; Ermakov, S.A. A physical approach for the observation of oil spills in SAR images. IEEE J. Ocean. Eng. 2005, 30, 496–507. [Google Scholar] [CrossRef]
- Latini, D.; Del Frate, F.; Jones, C.E. Multi-frequency and polarimetric quantitative analysis of the Gulf of Mexico oil spill event comparing different SAR systems. Remote Sens. Environ. 2016, 183, 26–42. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, C.; Li, X.; He, M.; Pichel, W. Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm. Int. J. Remote Sens. 2010, 31, 4819–4833. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; pp. 3–11. [Google Scholar]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Wang, S.; Li, L.; Zhuang, X. AttU-Net: Attention U-Net for brain tumor segmentation. In International MICCAI Brainlesion Workshop; Springer International Publishing: Cham, Switzerland, 2021; pp. 302–311. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2022; pp. 205–218. [Google Scholar]
- Solberg, A.S.; Solberg, R. A large-scale evaluation of features for automatic detection of oil spills in ERS SAR images. Int. Geosci. Remote Sens. Symp. 1996, 3, 1484–1486. [Google Scholar]
- Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Yu, F.; Sun, W.; Li, J.; Zhao, Y.; Zhang, Y.; Chen, G. An Improved Otsu Method for Oil Spill Detection from SAR Images. Oceanologia 2017, 59, 311–317. [Google Scholar] [CrossRef]
- Singha, S.; Vespe, M.; Trieschmann, O. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark. Mar. Pollut. Bull. 2013, 73, 199–209. [Google Scholar] [CrossRef]
- Hu, G.; Xiao, X. Edge detection of oil spill using SAR image. In Proceedings of the 2013 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Chengdu, China, 21–25 July 2013; pp. 466–469. [Google Scholar]
- Liu, P.; Li, Y.; Liu, B.; Chen, P.; Xu, J. Semi-automatic oil spill detection on X-band marine radar images using texture analysis, machine learning, and adaptive thresholding. Remote Sens. 2019, 11, 756. [Google Scholar] [CrossRef]
- Araújo, R.T.; de Medeiros, F.N.; Costa, R.C.; Marques, R.C.; Moreira, R.B.; Silva, J.L. Locating oil spill in SAR images using wavelets and region growing. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Hradec Kralove, Czech Republic, 10–12 July 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1184–1193. [Google Scholar]
- Mera, D.; Bolon-Canedo, V.; Cotos, J.M.; Alonso-Betanzos, A. On the use of feature selection to improve the detection of sea oil spills in SAR images. Comput. Geosci. 2017, 100, 166–178. [Google Scholar] [CrossRef]
- Wan, J.; Cheng, Y. Remote sensing monitoring of Gulf of Mexico oil spill using ENVISAT ASAR images. In Proceedings of the 2013 21st International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013; pp. 1–5. [Google Scholar]
- Singha, S.; Bellerby, T.J.; Trieschmann, O. Satellite oil spill detection using artificial neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2355–2363. [Google Scholar] [CrossRef]
- Topouzelis, K.; Stathakis, D.; Karathanassi, V. Investigation of genetic algorithms contribution to feature selection for oil spill detection. Int. J. Remote Sens. 2009, 30, 611–625. [Google Scholar] [CrossRef]
- Chehresa, S.; Amirkhani, A.; Rezairad, G.A.; Mosavi, M.R. Optimum features selection for oil spill detection in SAR image. J. Indian Soc. Remote Sens. 2016, 44, 775–787. [Google Scholar] [CrossRef]
- Fan, Y.; Rui, X.; Zhang, G.; Yu, T.; Xu, X.; Poslad, S. Feature merged network for oil spill detection using SAR images. Remote Sens. 2021, 13, 3174. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; Wu, P.; Kong, P. Oil spill detection based on deep convolutional neural networks using polarimetric scattering information from Sentinel-1 SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Wu, H.; Chen, P. An improved Deeplabv3+ semantic segmentation algorithm with multiple loss constraints. PLoS ONE 2022, 17, e0261582. [Google Scholar] [CrossRef]
- Li, Y.; Lyu, X.; Frery, A.C.; Ren, P. Oil spill detection with multiscale conditional adversarial networks with small-data training. Remote Sens. 2021, 13, 2378. [Google Scholar] [CrossRef]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Gribbon, K.T.; Johnston, C.T.; Bailey, D.G. A real-time FPGA implementation of a barrel distortion correction algorithm with bilinear interpolation. In Proceedings of the Image and Vision Computing New Zealand, Palmerston North, New Zealand, 26–28 November 2003; pp. 408–413. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Swish: A self-gated activation function. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Fatima, A.; Pethe, A. NVM device-based deep inference architecture using self-gated activation functions (Swish). In Machine Vision and Augmented Intelligence—Theory and Applications: Select Proceedings of MAI 2021; Springer: Singapore, 2021; pp. 33–44. [Google Scholar]
Method | Dice↑ | HD95↓ | Precision↑ | Accuracy↑ | ||||
---|---|---|---|---|---|---|---|---|
PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | |
FCN [30] | 0.723 | 0.741 | 9.95 | 11.17 | 0.790 | 0.655 | 0.897 | 0.827 |
SegNet [31] | 0.667 | 0.664 | 8.22 | 10.76 | 0.605 | 0.519 | 0.899 | 0.803 |
U-Net [32] | 0.716 | 0.733 | 8.79 | 11.05 | 0.636 | 0.709 | 0.911 | 0.807 |
Unet++ [33] | 0.725 | 0.728 | 9.39 | 11.85 | 0.679 | 0.666 | 0.907 | 0.807 |
R2UNet [34] | 0.731 | 0.709 | 9.05 | 11.02 | 0.694 | 0.640 | 0.909 | 0.787 |
AttU-Net [35] | 0.713 | 0.724 | 8.75 | 11.18 | 0.621 | 0.739 | 0.912 | 0.790 |
Transunet [36] | 0.721 | 0.732 | 9.04 | 11.94 | 0.593 | 0.690 | 0.915 | 0.811 |
Swin-Unet [37] | 0.716 | 0.755 | 8.86 | 11.29 | 0.609 | 0.663 | 0.912 | 0.830 |
Ours | 0.784 | 0.815 | 8.21 | 9.99 | 0.729 | 0.769 | 0.930 | 0.879 |
Mask | Dice↑ | HD95↓ | Precision↑ | Accuracy↑ | ||||
---|---|---|---|---|---|---|---|---|
PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | |
d | 0.772 | 0.807 | 8.76 | 10.19 | 0.786 | 0.753 | 0.921 | 0.875 |
e | 0.780 | 0.810 | 8.26 | 10.13 | 0.714 | 0.762 | 0.929 | 0.875 |
f | 0.781 | 0.811 | 8.19 | 9.97 | 0.714 | 0.747 | 0.930 | 0.879 |
0.784 | 0.815 | 8.21 | 9.99 | 0.729 | 0.769 | 0.930 | 0.879 |
MCL | FEM | Dice↑ | HD95↓ | Precision↑ | Accuracy↑ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | ||||
✓ | ✓ | 0.772 | 0.792 | 8.36 | 10.41 | 0.712 | 0.744 | 0.926 | 0.863 | ||
✓ | ✓ | 0.784 | 0.815 | 8.21 | 9.99 | 0.729 | 0.769 | 0.930 | 0.879 | ||
✓ | ✓ | 0.771 | 0.801 | 8.43 | 10.35 | 0.724 | 0.764 | 0.925 | 0.866 | ||
✓ | ✓ | 0.767 | 0.797 | 8.69 | 10.13 | 0.757 | 0.719 | 0.920 | 0.868 |
Height | Params/M | Dice↑ | HD95↓ | Precision↑ | Accuracy↑ | ||||
---|---|---|---|---|---|---|---|---|---|
PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | ||
7.06 | 0.765 | 0.767 | 8.63 | 10.57 | 0.725 | 0.721 | 0.921 | 0.841 | |
28.90 | 0.784 | 0.815 | 8.21 | 9.99 | 0.729 | 0.769 | 0.930 | 0.879 | |
116.23 | 0.782 | 0.813 | 8.43 | 10.08 | 0.749 | 0.758 | 0.927 | 0.877 |
CAM | Dice↑ | HD95↓ | Precision↑ | Accuracy↑ | ||||
---|---|---|---|---|---|---|---|---|
PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | PALSAR | SENTINEL | |
✗ | 0.738 | 0.758 | 8.81 | 10.82 | 0.715 | 0.740 | 0.913 | 0.830 |
✓ | 0.784 | 0.815 | 8.21 | 9.99 | 0.729 | 0.769 | 0.930 | 0.879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, Y.; Yang, X.; Chu, D.; Cao, W. A Novel Multi-Scale Feature Map Fusion for Oil Spill Detection of SAR Remote Sensing. Remote Sens. 2024, 16, 1684. https://doi.org/10.3390/rs16101684
Li C, Yang Y, Yang X, Chu D, Cao W. A Novel Multi-Scale Feature Map Fusion for Oil Spill Detection of SAR Remote Sensing. Remote Sensing. 2024; 16(10):1684. https://doi.org/10.3390/rs16101684
Chicago/Turabian StyleLi, Chunshan, Yushuai Yang, Xiaofei Yang, Dianhui Chu, and Weijia Cao. 2024. "A Novel Multi-Scale Feature Map Fusion for Oil Spill Detection of SAR Remote Sensing" Remote Sensing 16, no. 10: 1684. https://doi.org/10.3390/rs16101684
APA StyleLi, C., Yang, Y., Yang, X., Chu, D., & Cao, W. (2024). A Novel Multi-Scale Feature Map Fusion for Oil Spill Detection of SAR Remote Sensing. Remote Sensing, 16(10), 1684. https://doi.org/10.3390/rs16101684