Improved Wetland Mapping of a Highly Fragmented Agricultural Landscape Using Land Surface Phenological Features
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Field Survey
2.3. Vegetation Compositional Types
2.4. Topographic Variables
2.5. Sentinel-2 Based Variables
2.5.1. Tasseled Cap Transformations (TCT)
2.5.2. Vegetation Indices and Calculation of Statistical and Phenological Features
2.6. Machine Learning Classification
2.6.1. Development of Random Forest Models
2.6.2. Classification Accuracy
2.7. Model Comparison
3. Results
3.1. Model Performance
3.1.1. Level One Classification
3.1.2. Level Two Classification
3.1.3. Level Three Classification
3.2. Model Comparison
3.3. Predicted Wetland Distribution
3.4. Key Predictors to Discriminate Wetland
4. Discussion
4.1. The Value of HANTS in Wetland Identification
4.2. The Potential and Limits of Using HANTS Features to Discriminate Wetland Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Larkin, Z.T.; Ralph, T.J.; Tooth, S.; McCarthy, T.S. The interplay between extrinsic and intrinsic controls in determining floodplain wetland characteristics in the South African drylands. Earth Surf. Process. Landf. 2017, 42, 1092–1109. [Google Scholar] [CrossRef]
- Palmer, M.; Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science 2019, 365, eaaw2087. [Google Scholar] [CrossRef] [PubMed]
- Powell, M.; Hodgins, G.; Danaher, T.; Ling, J.; Hughes, M.; Wen, L. Mapping wetland types in semiarid floodplains: A statistical learning approach. Remote Sens. 2019, 11, 609. [Google Scholar] [CrossRef]
- Evenson, G.R.; Golden, H.E.; Lane, C.R.; McLaughlin, D.L.; D’Amico, E. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecol. Appl. 2018, 28, 953–966. [Google Scholar] [CrossRef]
- Thapa, R.; Thoms, M.; Parsons, M. An adaptive cycle hypothesis of semi-arid floodplain vegetation productivity in dry and wet resource states. Ecohydrology 2016, 9, 39–51. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Jolly, I.D.; McEwan, K.L.; Holland, K.L. A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology: Ecosystems, Land and Water Process Interactions. Ecohydrogeomorphology 2008, 1, 43–58. [Google Scholar] [CrossRef]
- Trepel, M. Assessing the cost-effectiveness of the water purification function of wetlands for environmental planning. Ecol. Complex. 2010, 7, 320–326. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. Comparing carbon sequestration in temperate freshwater wetland communities. Glob. Change Biol. 2012, 18, 1636–1647. [Google Scholar] [CrossRef]
- Eric, A.; Chrystal, M.-P.; Erik, A.; Kenneth, B.; Robert, C. Evaluating ecosystem services for agricultural wetlands: A systematic review and meta-analysis. Wetl. Ecol. Manag. 2022, 30, 1129–1149. [Google Scholar] [CrossRef]
- Huryna, H.; Brom, J.; Pokorny, J. The importance of wetlands in the energy balance of an agricultural landscape. Wetl. Ecol. Manag. 2014, 22, 363–381. [Google Scholar] [CrossRef]
- Decleer, K.; Maes, D.; Van Calster, H.; Jansen, I.; Pollet, M.; Dekoninck, W.; Baert, L.; Grootaert, P.; Van Diggelen, R.; Bonte, D. Importance of core and linear marsh elements for wetland arthropod diversity in an agricultural landscape. Insect Conserv. Divers. 2015, 8, 289–301. [Google Scholar] [CrossRef]
- Colloff, M.J.; Baldwin, D.S. Resilience of floodplain ecosystems in a semi-arid environment. Rangel. J. 2010, 32, 305–314. [Google Scholar] [CrossRef]
- Ablat, X.; Wang, Q.; Arkin, N.; Guoping, T.; Sawut, R. Spatiotemporal variations and underlying mechanism of the floodplain wetlands in the meandering Yellow River in arid and semi-arid regions. Ecol. Indic. 2022, 136, 108709. [Google Scholar] [CrossRef]
- Liu, D.; Cao, C.; Chen, W.; Ni, X.; Tian, R.; Xing, X. Monitoring and predicting the degradation of a semi-arid wetland due to climate change and water abstraction in the Ordos Larus relictus National Nature Reserve, China. Geomat. Nat. Hazards Risk 2017, 8, 367–383. [Google Scholar] [CrossRef]
- Patten, D.T. Riparian ecosytems of semi-arid North America: Diversity and human impacts. Wetlands 1998, 18, 498–512. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y. Global wetland datasets: A review. Wetlands 2017, 37, 807–817. [Google Scholar] [CrossRef]
- Rains, M.C.; Landry, S.; Rains, K.C.; Seidel, V.; Crisman, T.L. Using net wetland loss, current wetland condition, and planned future watershed condition for wetland conservation planning and prioritization, Tampa Bay Watershed, Florida. Wetlands 2013, 33, 949–963. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Reis, V.; Hermoso, V.; Hamilton, S.K.; Ward, D.; Fluet-Chouinard, E.; Lehner, B.; Linke, S. A global assessment of inland wetland conservation status. Bioscience 2017, 67, 523–533. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef]
- Gxokwe, S.; Dube, T.; Mazvimavi, D. Multispectral remote sensing of wetlands in semi-arid and arid areas: A review on applications, challenges and possible future research directions. Remote Sens. 2020, 12, 4190. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T.; Shoko, C. Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa. Geocarto Int. 2022, 37, 5891–5913. [Google Scholar] [CrossRef]
- Garioud, A.; Valero, S.; Giordano, S.; Mallet, C. Recurrent-based regression of Sentinel time series for continuous vegetation monitoring. Remote Sens. Environ. 2021, 263, 112419. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.W.; Brisco, B.; Mohammadimanesh, F. Remote Sensing and Machine Learning Tools to Support Wetland Monitoring: A Meta-Analysis of Three Decades of Research. Remote Sens. 2022, 14, 6104. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef]
- LaRocque, A.; Phiri, C.; Leblon, B.; Pirotti, F.; Connor, K.; Hanson, A. Wetland mapping with landsat 8 OLI, sentinel-1, ALOS-1 PALSAR, and LiDAR data in Southern New Brunswick, Canada. Remote Sens. 2020, 12, 2095. [Google Scholar] [CrossRef]
- Li, A.; Song, K.; Chen, S.; Mu, Y.; Xu, Z.; Zeng, Q. Mapping African wetlands for 2020 using multiple spectral, geo-ecological features and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2022, 193, 252–268. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Mander; Comín, F. A.; Pedrocchi, C.; Uuemaa, E. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments. J. Environ. Qual. 2008, 37, 2170–2180. [Google Scholar] [CrossRef]
- Sandi, S.G.; Saco, P.M.; Rodriguez, J.F.; Saintilan, N.; Wen, L.; Kuczera, G.; Riccardi, G.; Willgoose, G. Patch organization and resilience of dryland wetlands. Sci. Total Environ. 2020, 726, 138581. [Google Scholar] [CrossRef]
- Mitsch, W.J. Restoration of our lakes and rivers with wetlands—An important application of ecological engineering. Water Sci. Technol. 1995, 31, 167–177. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Landcover Datasets: A Comparison of Dynamic World, World Cover and Esri Landcover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Advances in hyperspectral remote sensing of vegetation and agricultural crops. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation; CRC Press: Boca Raton, FL, USA, 2018; pp. 3–37. [Google Scholar]
- Macintyre, P.; van Niekerk, A.; Mucina, L. Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101980. [Google Scholar] [CrossRef]
- Nasiri, V.; Beloiu, M.; Darvishsefat, A.A.; Griess, V.C.; Maftei, C.; Waser, L.T. Mapping tree species composition in a Caspian temperate mixed forest based on spectral-temporal metrics and machine learning. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103154. [Google Scholar] [CrossRef]
- Wu, N.; Shi, R.; Zhuo, W.; Zhang, C.; Zhou, B.; Xia, Z.; Tao, Z.; Gao, W.; Tian, B. A classification of tidal flat wetland vegetation combining phenological features with Google Earth Engine. Remote Sens. 2021, 13, 443. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of phenological research using Sentinel-2 data: A review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Verhoef, W. Application of Harmonic Analysis of NDVI Time Series (HANTS); Dlo Winand Staring Center: Wageningen, The Netherlands, 1996; pp. 19–24. [Google Scholar]
- Kong, D.; McVicar, T.R.; Xiao, M.; Zhang, Y.; Peña-Arancibia, J.L.; Filippa, G.; Xie, Y.; Gu, X. phenofit: An R package for extracting vegetation phenology from time series remote sensing. Methods Ecol. Evol. 2022, 13, 1508–1527. [Google Scholar] [CrossRef]
- Verhulp, J.; Van Niekerk, A. Effect of inter-image spectral variation on landcover separability in heterogeneous areas. Int. J. Remote Sens. 2016, 37, 1639–1657. [Google Scholar] [CrossRef]
- Powell, S.; Jakeman, A.; Croke, B. Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands? Ecol. Indic. 2014, 45, 486–493. [Google Scholar] [CrossRef]
- Southwell, M.; Wilson, G.; Ryder, D.; Sparks, P.; Thoms, M. Monitoring the Ecological Response of Commonwealth Environmental Water Delivered in 2013–14 in the Gwydir River System. A Report to the Department of Environment; University of New England: Armidale, NSW, Australia, 2015. [Google Scholar]
- Eco Logical Australia. Gwydir River System Selected Area—Five Year Evaluation Report; Commonwealth Environmental Water Office: Canberra, ACT, Australia, 2019. [Google Scholar]
- Environment Climate Change and Water. Gwydir Wetlands Adaptive Environmental Management Plan: Synthesis of Information Projects and Actions. Sydney, Australia. 2011. Available online: https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Water/Water-for-the-environment/gwydir-wetlands-adaptive-environmental-management-plan-110027.pdf (accessed on 20 March 2024).
- Roberts, J.; Marston, F. Water Regime for Wetland and Floodplain Plants: A Source Book for the Murray-Darling Basin; National Water Commission: Canberra, ACT, Australia, 2011; p. 169. [Google Scholar]
- Office of Environment and Heritage. Soil and Land Resources of the Moree Plains; NSW Office of Environment and Heritage: Sydney, Australia, 2015. [Google Scholar]
- DCCEEW. Wetlands of the Lower Mehi River and Ballin Boora Creek: Ecological Values and Flow Constraints. Sydney 2022, Australia. Available online: https://datasets.seed.nsw.gov.au/dataset/lowermehi_wetlandvegetation_v1_feb2022 (accessed on 10 November 2023).
- Hothorn, T.; Leisch, F.; Zeileis, A.; Hornik, K. The design and analysis of benchmark experiments. J. Comput. Graph. Stat. 2005, 14, 675–699. [Google Scholar] [CrossRef]
- Eugster, M.J.A.; Leisch, F. Exploratory analysis of benchmark experiments an interactive approach. Comput. Stat. 2011, 26, 699–710. [Google Scholar] [CrossRef]
- Gallant, J.; Wilson, N.; Dowling, T.; Read, A.; Inskeep, C. SRTM-Derived 1 Second Digital Elevation Models Version 1.0. Record 1; Geoscience: Canberra, Australia, 2011. [Google Scholar]
- Gallant, J.C.; Wilson, J.P. Primary topographic attributes. In Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Tesfa, T.K.; Leung, L.-Y.R. Exploring new topography-based subgrid spatial structures for improving land surface modeling. Geosci. Model Dev. 2017, 10, 873–888. [Google Scholar] [CrossRef]
- McNab, W.H. A topographic index to quantify the effect of mesoscale landform on site productivity. Can. J. For. Res. 1993, 23, x93–x140. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Brown, C.F.; Czerwinski, W.; Rucklidge, W.J. Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 2124–2134. [Google Scholar]
- El Hairchi, K.; Ben Brahim, Y.; Ouiaboub, L.; Limame, A.; Saadi, O.; Nouayti, A. Desertification modeling in the Moroccan Middle Atlas using Sentinel-2A images and TCT indexes (case of the Ain Nokra Forest). Model. Earth Syst. Environ. 2023, 9, 4279–4293. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of Thematic Mapper data—The TM tasseled cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Nedkov, R. Orthogonal transformation of segmented images from the satellite Sentinel-2. Comptes Rendus L’academie Bulg. Sci. 2017, 70, 687–692. [Google Scholar]
- Montero, D.; Aybar, C.; Mahecha, M.D.; Martinuzzi, F.; Söchting, M.; Wieneke, S. A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research. Sci. Data 2023, 10, 197. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, A.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Z. ASI: An artificial surface Index for Landsat 8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102703. [Google Scholar] [CrossRef]
- Adams, B.; Iverson, L.; Matthews, S.; Peters, M.; Prasad, A.; Hix, D.M. Mapping forest composition with landsat time series: An evaluation of seasonal composites and harmonic regression. Remote Sens. 2020, 12, 610. [Google Scholar] [CrossRef]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafleur, P.M.; Peichl, M.; Gonsamo, A.; et al. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Wen, L.; Hughes, M. Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting and stacking techniques. Remote Sens. 2020, 12, 1683. [Google Scholar] [CrossRef]
- Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 2017, 10, 35. [Google Scholar] [CrossRef]
- Tyagi, S.; Mittal, S. Sampling approaches for imbalanced data classification problem in machine learning. In Proceedings of ICRIC 2019: Recent Innovations in Computing; Springer International Publishing: Cham, Switzerland, 2019; pp. 209–221. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Aras, S.; Lisboa, P.J. Explainable inflation forecasts by machine learning models. Expert Syst. Appl. 2022, 207, 117982. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Vakili, M.; Ghamsari, M.; Rezaei, M. Performance analysis and comparison of machine and deep learning algorithms for IoT data classification. arXiv 2020, arXiv:2001.09636. [Google Scholar]
- Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. 1995, 27, 326–327. [Google Scholar] [CrossRef]
- DCCEEW. Landuse, N.S. 2017 v1.5. Available online: https://datasets.seed.nsw.gov.au/dataset/nsw-landuse-2017 (accessed on 21 September 2023).
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 2011, 115, 3129–3152. [Google Scholar] [CrossRef]
- NSW Threatened Species Scientific Committee. Marsh Club-Rush Sedgeland in the Darling Riverine Plains Bioregion—Determination to Make a Minor Amendment. Available online: https://www.environment.nsw.gov.au/topics/animals-and-plants/threatened-species/nsw-threatened-species-scientific-committee (accessed on 12 February 2024).
- Fortin, M.-J.; Olson, R.J.; Ferson, S.; Iverson, L.; Hunsaker, C.; Edwards, G.; Levine, D.; Butera, K.; Klemas, V. Issues related to the detection of boundaries. Landsc. Ecol. 2000, 15, 453–466. [Google Scholar] [CrossRef]
- National Research Council. Wetlands: Characteristics and Boundaries; National Academies Press: Washington, DC, USA, 1995. [Google Scholar]
- Capon, S.J. Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. J. Arid. Environ. 2005, 60, 283–302. [Google Scholar] [CrossRef]
- Liu, M.; Hamilton, S.H.; Jakeman, A.J.; Lerat, J.; Savage, C.; Croke, B.F. Assessing the contribution of hydrologic and climatic factors on vegetation condition changes in semi-arid wetlands: An analysis for the Narran Lakes. Ecol. Model. 2024, 487, 110568. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102164. [Google Scholar] [CrossRef]
Level 1 | Level 2 | Level 3 | No. of Samples |
---|---|---|---|
L1: Wetland | L11: Forested wetland | L111: River red gum forest | 69 |
L12: Woodland wetland | L121: Coolabah wetland woodland | 115 | |
L122: Coolabah open woodland | 122 | ||
L123: Black box woodland | 29 | ||
L13: Shrubland wetland | L131: Lignum shrubland | 92 | |
L14: Marshes | L141: Common reed wetland | 29 | |
L142: Water couch wetland | 25 | ||
L143: Marsh club-rush wetland | 17 | ||
L15: Sedgeland | L144: Sedgeland | 73 | |
L2: Terrestrial upland | L21: Terrestrial upland | L211: Terrestrial upland | 104 |
L3: Cropland | L31: Cropland | L311: Cropland | 77 |
L4: Water | L41: Water | L411: Water | 19 |
Index | Formula | Relevance | Reference |
---|---|---|---|
kNDVI | kNDVI improves accuracy in monitoring vegetation parameters such as LAI and GPP. | [61] | |
NDRE | NDRE is sensitive not only to chlorophyll content but also to canopy structure and composition variations. Differences in leaf angle distribution, canopy density, and leaf area index (LAI) influence the reflectance properties in the red-edge region, which NDRE can capture. | [62] | |
IRECI | Highly correlated with leaf chlorophyll content. | [63] | |
NDMI | NDMI detects moisture levels in vegetation, providing an indicator for vegetation water stress levels. | [64] | |
MNDWI | MNDWI highlights water bodies and monitor their turbidity. | [65] | |
EMBI | and | EMBI enhances detecting bare soil areas, can be valuable to differentiate bare soil and other landcover types. Due to the high contrast between bare soil and vegetation, EMBI provides a continuum ranging from high vegetation cover to exposed soil. | [66] |
Models | M1 | M2 | M3 |
---|---|---|---|
Predictors | Topographic, TCT, statistical and HANTS features | Topographic, TCT, statistical features | Topographic, TCT, HANTS features |
Class | Validation | M1 | M2 | M3 | M1 | M2 | M3 | M1 | M2 | M3 |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Precision | Recall | ||||||||
L1: Wetland | Training | 0.936 | 0.921 | 0.933 | 0.933 | 0.925 | 0.933 | 0.940 | 0.918 | 0.932 |
Testing | 0.933 | 0.916 | 0.903 | 0.943 | 0.916 | 0.926 | 0.923 | 0.916 | 0.881 | |
L2: Terrestrial upland | Training | 0.706 | 0.634 | 0.692 | 0.731 | 0.635 | 0.725 | 0.682 | 0.633 | 0.662 |
Testing | 0.750 | 0.654 | 0.632 | 0.700 | 0.654 | 0.581 | 0.808 | 0.654 | 0.692 | |
L3: Cropland | Training | 0.950 | 0.945 | 0.919 | 0.952 | 0.936 | 0.880 | 0.948 | 0.955 | 0.962 |
Testing | 0.889 | 0.865 | 0.872 | 0.941 | 0.889 | 0.850 | 0.842 | 0.842 | 0.895 | |
L4: Water | Training | 0.859 | 0.875 | 0.875 | 0.795 | 0.824 | 0.824 | 0.933 | 0.933 | 0.933 |
Testing | 0.667 | 0.667 | 0.667 | 0.600 | 0.600 | 0.600 | 0.750 | 0.750 | 0.750 | |
Weighted F1 | Training | 0.915 | 0.898 | 0.903 | ||||||
Testing | 0.928 | 0.918 | 0.878 | |||||||
Overall accuracy | Training | 0.916 | 0.898 | 0.916 | ||||||
Testing | 0.927 | 0.917 | 0.927 |
Class | Validation | M1 | M2 | M3 | M1 | M2 | M3 | M1 | M2 | M3 |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Precision | Recall | ||||||||
L11: Forested wetland | Training | 0.702 | 0.693 | 0.695 | 0.669 | 0.647 | 0.665 | 0.738 | 0.746 | 0.727 |
Testing | 0.789 | 0.800 | 0.800 | 0.714 | 0.696 | 0.778 | 0.882 | 0.941 | 0.824 | |
L12: Woody wetland | Training | 0.797 | 0.718 | 0.802 | 0.835 | 0.773 | 0.841 | 0.763 | 0.671 | 0.767 |
Testing | 0.784 | 0.764 | 0.760 | 0.845 | 0.839 | 0.790 | 0.731 | 0.701 | 0.731 | |
L13: Shrub wetland | Training | 0.608 | 0.531 | 0.571 | 0.565 | 0.503 | 0.528 | 0.658 | 0.562 | 0.620 |
Testing | 0.744 | 0.727 | 0.711 | 0.800 | 0.762 | 0.727 | 0.696 | 0.696 | 0.696 | |
L14: Marshes | Training | 0.834 | 0.772 | 0.816 | 0.842 | 0.798 | 0.818 | 0.826 | 0.748 | 0.815 |
Testing | 0.865 | 0.882 | 0.865 | 0.800 | 0.882 | 0.800 | 0.941 | 0.882 | 0.941 | |
L15: Sedgeland | Training | 0.643 | 0.539 | 0.606 | 0.638 | 0.490 | 0.620 | 0.647 | 0.600 | 0.593 |
Testing | 0.686 | 0.605 | 0.563 | 0.706 | 0.520 | 0.643 | 0.667 | 0.722 | 0.500 | |
L21: Terrestrial upland | Training | 0.715 | 0.662 | 0.664 | 0.729 | 0.679 | 0.669 | 0.703 | 0.646 | 0.659 |
Testing | 0.714 | 0.760 | 0.643 | 0.667 | 0.792 | 0.600 | 0.769 | 0.731 | 0.692 | |
L31: Cropland | Training | 0.937 | 0.936 | 0.936 | 0.926 | 0.909 | 0.909 | 0.948 | 0.966 | 0.966 |
Testing | 0.895 | 0.865 | 0.865 | 0.895 | 0.889 | 0.889 | 0.895 | 0.842 | 0.842 | |
L41: Water | Training | 0.875 | 0.899 | 0.903 | 0.824 | 0.855 | 0.875 | 0.933 | 0.947 | 0.933 |
Testing | 0.600 | 0.545 | 0.545 | 0.500 | 0.429 | 0.429 | 0.750 | 0.750 | 0.750 | |
Weighted F1 | Training | 0.771 | 0.728 | 0.750 | ||||||
Testing | 0.803 | 0.798 | 0.801 | |||||||
Overall | Training | 0.769 | 0.725 | 0.769 | ||||||
Testing | 0.802 | 0.797 | 0.802 |
Class | Validation | M1 | M2 | M3 | M1 | M2 | M3 | M1 | M2 | M3 |
---|---|---|---|---|---|---|---|---|---|---|
F1 | Precision | Recall | ||||||||
L111: River red gum forest | Training | 0.762 | 0.751 | 0.755 | 0.707 | 0.694 | 0.735 | 0.827 | 0.819 | 0.777 |
Testing | 0.667 | 0.571 | 0.667 | 0.769 | 0.556 | 0.688 | 0.588 | 0.588 | 0.647 | |
L121: Coolabah wetland woodland | Training | 0.612 | 0.565 | 0.578 | 0.718 | 0.632 | 0.651 | 0.533 | 0.510 | 0.520 |
Testing | 0.583 | 0.462 | 0.500 | 0.700 | 0.500 | 0.500 | 0.500 | 0.429 | 0.500 | |
L122: Coolabah open woodland | Training | 0.594 | 0.551 | 0.558 | 0.613 | 0.602 | 0.574 | 0.576 | 0.508 | 0.544 |
Testing | 0.633 | 0.433 | 0.633 | 0.655 | 0.448 | 0.655 | 0.613 | 0.419 | 0.613 | |
L123: Black box woodland | Training | 0.577 | 0.494 | 0.565 | 0.522 | 0.425 | 0.528 | 0.645 | 0.591 | 0.609 |
Testing | 0.833 | 0.364 | 0.727 | 1.000 | 0.500 | 1.000 | 0.714 | 0.286 | 0.571 | |
L131: Lignum shrubland | Training | 0.609 | 0.622 | 0.623 | 0.576 | 0.588 | 0.593 | 0.646 | 0.661 | 0.655 |
Testing | 0.596 | 0.449 | 0.638 | 0.583 | 0.423 | 0.625 | 0.609 | 0.478 | 0.652 | |
L141: Common reed wetland | Training | 0.684 | 0.590 | 0.637 | 0.661 | 0.573 | 0.628 | 0.709 | 0.609 | 0.645 |
Testing | 0.556 | 0.615 | 0.526 | 0.455 | 0.667 | 0.417 | 0.714 | 0.571 | 0.714 | |
L142: Water couch wetland | Training | 0.896 | 0.866 | 0.866 | 0.849 | 0.821 | 0.821 | 0.947 | 0.916 | 0.916 |
Testing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
L143: Marsh club-rush Wetlands | Training | 0.775 | 0.774 | 0.763 | 0.781 | 0.667 | 0.758 | 0.769 | 0.923 | 0.769 |
Testing | 0.667 | 0.333 | 0.400 | 1.000 | 0.250 | 1.000 | 0.500 | 0.500 | 0.250 | |
L144: Sedgeland | Training | 0.625 | 0.549 | 0.561 | 0.614 | 0.518 | 0.558 | 0.636 | 0.585 | 0.564 |
Testing | 0.432 | 0.457 | 0.438 | 0.421 | 0.471 | 0.500 | 0.444 | 0.444 | 0.389 | |
L211: Terrestrial upland | Training | 0.718 | 0.654 | 0.689 | 0.728 | 0.725 | 0.694 | 0.708 | 0.595 | 0.685 |
Testing | 0.702 | 0.588 | 0.679 | 0.645 | 0.600 | 0.667 | 0.769 | 0.577 | 0.692 | |
L311: Cropland | Training | 0.940 | 0.906 | 0.908 | 0.938 | 0.898 | 0.870 | 0.941 | 0.914 | 0.948 |
Testing | 0.864 | 0.927 | 0.837 | 0.760 | 0.864 | 0.750 | 1.000 | 1.000 | 0.947 | |
L411: Water | Training | 0.875 | 0.875 | 0.877 | 0.824 | 0.824 | 0.850 | 0.933 | 0.933 | 0.907 |
Testing | 0.667 | 0.667 | 0.667 | 0.600 | 0.600 | 0.600 | 0.750 | 0.750 | 0.750 | |
Weighted F1 | Training | 0.703 | 0.696 | 0.698 | ||||||
Testing | 0.690 | 0.649 | 0.655 | |||||||
Overall | Training | 0.706 | 0.700 | 0.702 | ||||||
Testing | 0.691 | 0.654 | 0.665 |
Level | Metric | M1 vs. M2 | M1 vs. M3 | M2 vs. M3 | |||
---|---|---|---|---|---|---|---|
Difference | p-Value | Difference | p-Value | Difference | p-Value | ||
L1 | Accuracy | 0.024 | <0.001 | 0.007 | 0.014 | −0.017 | 0.004 |
F1 | 0.021 | <0.001 | 0.009 | 0.023 | −0.011 | 0.117 | |
Mean precision | 0.022 | 0.005 | 0.013 | 0.009 | −0.008 | 0.366 | |
Mean recall | 0.021 | <0.001 | 0.006 | 0.192 | −0.016 | 0.007 | |
L2 | Accuracy | 0.059 | <0.001 | 0.015 | 0.002 | −0.044 | <0.001 |
F1 | 0.042 | <0.001 | 0.013 | 0.007 | −0.028 | <0.001 | |
Mean precision | 0.048 | <0.001 | 0.010 | 0.110 | −0.038 | <0.001 | |
Mean recall | 0.035 | <0.001 | 0.017 | <0.001 | −0.018 | 0.005 | |
L3 | Accuracy | 0.035 | <0.001 | 0.025 | <0.001 | −0.010 | 0.196 |
F1 | 0.038 | <0.001 | 0.024 | 0.001 | −0.016 | 0.034 | |
Mean precision | 0.044 | <0.001 | 0.02 | 0.009 | −0.034 | 0.002 | |
Mean recall | 0.019 | 0.009 | 0.027 | <0.001 | 0.008 | 0.329 |
Class | Area (ha) | Percentage |
---|---|---|
L111: River red gum forest | 5775 | 1.33 |
L121: Coolabah wetland woodland | 11,353 | 2.61 |
L122: Coolabah open woodland | 40,727 | 9.38 |
L123: Black box woodland | 23,063 | 5.31 |
L131: Shrubland | 11,308 | 2.60 |
L141: Common reed wetland | 6037 | 1.39 |
L142: Water couch wetland | 991 | 0.23 |
L143: Marsh club-rush wetland | 1694 | 0.39 |
L144: Sedgeland | 25,230 | 5.81 |
L211: Terrestrial | 21,622 | 4.98 |
L311: Cropland | 276,005 | 63.55 |
L411: Water | 10,511 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Mason, T.; Powell, M.; Ling, J.; Ryan, S.; Bernich, A.; Gufu, G. Improved Wetland Mapping of a Highly Fragmented Agricultural Landscape Using Land Surface Phenological Features. Remote Sens. 2024, 16, 1786. https://doi.org/10.3390/rs16101786
Wen L, Mason T, Powell M, Ling J, Ryan S, Bernich A, Gufu G. Improved Wetland Mapping of a Highly Fragmented Agricultural Landscape Using Land Surface Phenological Features. Remote Sensing. 2024; 16(10):1786. https://doi.org/10.3390/rs16101786
Chicago/Turabian StyleWen, Li, Tanya Mason, Megan Powell, Joanne Ling, Shawn Ryan, Adam Bernich, and Guyo Gufu. 2024. "Improved Wetland Mapping of a Highly Fragmented Agricultural Landscape Using Land Surface Phenological Features" Remote Sensing 16, no. 10: 1786. https://doi.org/10.3390/rs16101786
APA StyleWen, L., Mason, T., Powell, M., Ling, J., Ryan, S., Bernich, A., & Gufu, G. (2024). Improved Wetland Mapping of a Highly Fragmented Agricultural Landscape Using Land Surface Phenological Features. Remote Sensing, 16(10), 1786. https://doi.org/10.3390/rs16101786