Research on Input Schemes for Polarimetric SAR Classification Using Deep Learning
Abstract
:1. Introduction
- Some algorithms stack and combine polarimetric decomposition features without considering the inherent limitations of the decomposition methods.
- Some methods normalize polarimetric features without accounting for the distribution characteristics of the data, often applying linear normalization methods to non-linear PolSAR data.
- Some methods employ different forms of CNN but overlook the complete scattering information and various polarimetric scattering characteristics in PolSAR images, utilizing incomplete polarized data as input for the network.
- The classification performance utilizing total power values of the second component (P2) and the third component (P3) obtained from RSD surpasses schemes using surface scattering power value (PS) and double-bounce scattering power value (PD) from RSD. However, the optimal input scheme includes P2, P3, PS, and PD.
- Regarding input schemes, in the face of limited computational resources, it is advisable to directly use the input scheme with all elements of the T-matrix or utilize all components obtained through RSD, as both ensure the completeness of polarimetric information.
- The 21-channel input scheme should be used when computational resources are sufficient.
- The two classic CNNs employed, VGG16 and AlexNet, differ in depth. After five rounds of accuracy statistics, VGG16 demonstrates superior stability. While the five-layer AlexNet neural network achieves high accuracy, it suggests that for PolSAR image classification using CNNs, an excessively deep network is unnecessary. In other words, VGG16 exhibits better stability, while the five-layer AlexNet achieves higher accuracy.
2. Related Works
2.1. PolSAR Classification with CNN
2.2. Perform Polarization Decomposition Using a Scattering Mechanism
3. Methods
3.1. Data Analysis and Feature Extraction
3.2. PolSAR Data Preprocessing and Input Schemes
3.3. Network Selection and Parameter Configuration, Loss Function, Evaluation Criteria
3.4. Experimental Process
4. Experimental Results and Analysis
4.1. Data Explanation
4.2. Classification Results of the Yellow River Delta on AlexNet
4.3. Classification Results on VGG16
5. Conclusions
- The classification performance utilizing total power values of the second component (P2) and the third component (P3), obtained through reflection symmetry decomposition, surpasses the research scheme using surface scattering power (PS) and second-order scattering power (PD) from RSD.
- Concerning polarization data input schemes with limited computational resources, direct use of scheme 7, which encompasses all of the information of the T-matrix, is suggested. If device configuration allows, prioritizing the use of the 21-parameter polarization data input scheme 8, including all parameters of the T-matrix and RSD, is recommended.
- Among the two classic CNN models in the experiment, VGG16 exhibits better stability, while the five-layer AlexNet achieves higher overall classification accuracy. Therefore, for PolSAR image classification using a CNN, an excessively deep network may not be necessary. However, deeper networks tend to offer better stability in training accuracy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yajima, Y.; Yamaguchi, Y.; Sato, R.; Yamada, H.; Boerner, W.-M. POLSAR Image Analysis of Wetlands Using a Modified Four-Component Scattering Power Decomposition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1667–1673. [Google Scholar] [CrossRef]
- Shi, J.; He, T.; Ji, S.; Nie, M.; Jin, H. CNN-improved Superpixel-to-pixel Fuzzy Graph Convolution Network for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4410118. [Google Scholar] [CrossRef]
- Gu, M.; Wang, Y.; Liu, H.; Wang, P. PolSAR Ship Detection Based on Noncircularity and Oblique Subspace Projection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4008805. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, Z.; Zhang, Y.; Tang, F.; Mao, W.; Zhao, H.; Xu, Z.; Zhang, Q.; Zhao, B.; Gao, H. Equatorial Ionospheric Scintillation Measurement in Advanced Land Observing Satellite (ALOS) Phased Array-Type L-Band Synthetic Aperture Radar (PALSAR) Observations. Engineering, 2024; in press. [Google Scholar] [CrossRef]
- Tang, F.; Ji, Y.; Zhang, Y.; Dong, Z.; Wang, Z.; Zhang, Q.; Zhao, B.; Gao, H. Drifting ionospheric scintillation simulation for L-band geosynchronous SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 852–854. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. ‘An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Huynen, J.R. Physical reality of radar targets. Proc. SPIE 1993, 1748, 86–96. [Google Scholar]
- Lee, J.-S.; Grunes, M.R.; Kwok, R. Classification of multi-look polarimetric SAR data based on complex Wishart distribution. Int. J. Remote Sens. 1994, 15, 2299–2311. [Google Scholar] [CrossRef]
- Zhang, F.; Li, P.; Zhang, Y.; Liu, X.; Ma, X.; Yin, Z. A Enhanced DeepLabv3+ for PolSAR image classification. In Proceedings of the 2023 4th International Conference on Computer Engineering and Application (ICCEA), Hangzhou, China, 7–9 April 2023; pp. 743–746. [Google Scholar] [CrossRef]
- Zhang, Q.; He, C.; He, B.; Tong, M. Learning Scattering Similarity and Texture-Based Attention with Convolutional Neural Networks for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5207419. [Google Scholar] [CrossRef]
- Nie, W.; Huang, K.; Yang, J.; Li, P. A Deep Reinforcement Learning-Based Framework for PolSAR Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4403615. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Elachi, C. Radar polarimetry for geoscience applications. In Geocarto International; Artech House: Norwood, MA, USA, 1990; p. 376. Available online: http://www.informaworld.com (accessed on 30 October 2023).
- Yang, M.; Zhang, L.; Shiu, S.C.K.; Zhang, D. Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary. Pattern Recognit. 2013, 46, 1865–1878. [Google Scholar] [CrossRef]
- Wang, X.; Han, T.X.; Yan, S. An HOG-LBP human detector with partial occlusion handing. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 32–39. [Google Scholar]
- Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyranic matching recognizing natural scene categories. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2006, 13, 2169–2178. [Google Scholar]
- Chen, Q.; Li, L.; Xu, Q.; Yang, S.; Shi, X.; Liu, X. Multi-feature segmentation for high-resolution polarimetric SAR data based on fractal net evolution approach. Remote Sens. 2011, 9, 570. [Google Scholar] [CrossRef]
- Hua, W.; Wang, S.; Xie, W.; Guo, Y.; Jin, X. Dual-channel convolutional neural network for polarimetric SAR images classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3201–3204. [Google Scholar]
- Ren, Z.; Hou, B.; Wen, Z.; Jiao, L. Patch-sorted deep feature learning for high resolution SAR image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 3113–3126. [Google Scholar] [CrossRef]
- Kilbride, J.B.; Poortinga, A.; Bhandari, B.; Thwal, N.S.; Quyen, N.H.; Silverman, J.; Tenneson, K.; Bell, D.; Gregory, M.; Kennedy, R.; et al. A Near Real-Time Mapping of Tropical Forest Disturbance Using SAR and Semantic Segmentation in Google Earth Engine. Remote Sens. 2023, 15, 5223. [Google Scholar] [CrossRef]
- Shi, J.; Wang, W.; Jin, H.; He, T. Complex matrix and multi-feature collaborative learning for polarimetric SAR image classification. Appl. Soft Comput. 2023, 134, 109965. [Google Scholar] [CrossRef]
- Shang, R.; Wang, J.; Jiao, L.; Yang, X.; Li, Y. Spatial feature-based convolutional neural network for PolSAR image classification. Appl. Soft Comput. 2022, 123, 108922. [Google Scholar] [CrossRef]
- Zakhvatkina, N.Y.; Alexandrov, V.Y.; Johannessen, O.M.; Sandven, S.; Frolov, I.Y. Classification of Sea Ice Types in ENVISAT Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Gade, M.; Zhou, H. TENet: A Texture-Enhanced Network for Intertidal Sediment and Habitat Classification in Multiband PolSAR Images. Remote Sens. 2024, 16, 972. [Google Scholar] [CrossRef]
- Zhu, L.; Ji, D.; Zhu, S.; Gan, W.; Wu, W.; Yan, J. Learning Statistical Texture for Semantic Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12532–12541. [Google Scholar]
- Wang, T.; Yang, X.; Wang, Y.; Fang, J.; Jia, L. A multi-level SAR sea ice image classification method by incorporating egg-code-based expert knowledge. In Proceedings of the 2012 5th International Congress on Image and Signal Processing (CISP), Chongqing, China, 16–18 October 2012. [Google Scholar]
- Liu, M.; Dai, Y.; Zhang, J.; Ren, G.; Meng, J.; Zhang, X. Research on Sea Ice Secondary Classification Method Using High-Resolution Fully Polarimetric Synthetic Aperture Radar Data. Acta Oceanol. Sin. 2013, 4, 80–87. [Google Scholar]
- Wang, W.; Gade, M.; Stelzer, K.; Kohlus, J.; Zhao, X.; Fu, K. A Classification Scheme for Sediments and Habitats on Exposed Intertidal Flats with Multi-Frequency Polarimetric SAR. Remote Sens. 2021, 13, 360. [Google Scholar] [CrossRef]
- Hughes, M.G.; Glasby, T.M.; Hanslow, D.J.; West, G.J.; Wen, L. Random Forest Classification Method for Predicting Intertidal Wetland Migration Under Sea Level Rise. Front. Environ. Sci. 2022, 10, 749950. [Google Scholar] [CrossRef]
- Davies, B.F.R.; Gernez, P.; Geraud, A.; Oiry, S.; Rosa, P.; Zoffoli, M.L.; Barillé, L. Multi- and hyperspectral classification of soft-bottom intertidal vegetation using a spectral library for coastal biodiversity remote sensing. Remote Sens. Environ. 2023, 290, 113554. [Google Scholar] [CrossRef]
- Kersten, P.R.; Lee, J.S.; Ainsworth, T.L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 519–527. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Shi, L.; Liu, M.; Liu, G.; Cao, C.; Wang, R. Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data. Remote Sens. 2024, 16, 1100. [Google Scholar] [CrossRef]
- Liu, X.; Jiao, L.; Tang, X.; Sun, Q.; Zhang, D. Polarimetric Convolutional Network for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3040–3054. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M.A. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Kumar, A.; Bansal, N.; Prateek, M.; Kumar, S. Semantic segmentation of PolSAR image data using advanced deep learning model. Sci. Rep. 2021, 11, 15365. [Google Scholar] [CrossRef]
- Cui, X.; Yang, F.; Wang, X.; Ai, B.; Luo, Y.; Ma, D. Deep learning model for seabed sediment classification based on fuzzy ranking feature optimization. Mar. Geol. 2021, 432, 106390. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Li, X.; Guo, H.; Zhang, L. PolSAR Image Semantic Segmentation Based on Deep Transfer Learning—Realizing Smooth Classification with Small Training Sets. IEEE Geosci. Remote Sens. Lett. 2019, 16, 977–981. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Ai, J.; Wang, F.; Mao, Y.; Luo, Q.; Yao, B.; Yan, H.; Xing, M.; Wu, Y. A Fine PolSAR Terrain Classification Algorithm Using the Texture Feature Fusion-Based Improved Convolutional Autoencoder. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5218714. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.-Q. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Chen, S.-W.; Tao, C.-S. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Feng, Z.; Min, T.; Xie, W.; Hanqiang, L. A new parallel dual-channel fully convolutional network via semi-supervised fcm for polsar image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4493–4505. [Google Scholar]
- Shi, J.; Jin, H.; Li, X. A Novel Multi-Feature Joint Learning Method for Fast Polarimetric SAR Terrain Classification. IEEE Access 2020, 8, 30491–30503. [Google Scholar] [CrossRef]
- van Zyl, J.J.; Arii, M.; Kim, Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3452–3459. [Google Scholar] [CrossRef]
- Jafari, Z.; Karami, E.; Taylor, R.; Bobby, P. Enhanced Ship/Iceberg Classification in SAR Images Using Feature Extraction and the Fusion of Machine Learning Algorithms. Remote Sens. 2023, 15, 5202. [Google Scholar] [CrossRef]
- Ren, S.; Zhou, F.; Bruzzone, L. Transfer-Aware Graph U-Net with Cross-Level Interactions for PolSAR Image Semantic Segmentation. Remote Sens. 2024, 16, 1428. [Google Scholar] [CrossRef]
- Yin, Q.; Hong, W.; Zhang, F.; Pottier, E. Optimal combination of polarimetric features for vegetation classification in PolSAR image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 3919–3931. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Proc. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 18–20 June 1996; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Gou, S.; Li, X.; Yang, X. Coastal Zone Classification with Fully Polarimetric SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1616–1620. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, J.; Zhou, Y.; Zhang, F.; Yin, Q. A Multichannel Fusion Convolutional Neural Network Based on Scattering Mechanism for PolSAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4007805. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, Z.; Wu, Y.; Gao, X.; Sun, X. Terrain Segmentation in Polarimetric SAR Images Using Dual-Attention Fusion Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4006005. [Google Scholar] [CrossRef]
- Gui, R.; Xu, X.; Yang, R.; Xu, Z.; Wang, L.; Pu, F. A General Feature Paradigm for Unsupervised Cross-Domain PolSAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4013305. [Google Scholar] [CrossRef]
- Bi, H.; Sun, J.; Xu, Z. A Graph-Based Semisupervised Deep Learning Model for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2116–2132. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jiao, L.; Guo, Y.; Liang, X.; Li, L.; Yang, S.; Qian, X. Polarimetric Multipath Convolutional Neural Network for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5207118. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- An, W. Research on Target Polarization Decomposition and Scattering Characteristic Extraction Based on Polarized SAR. Ph.D. Dissertation, Tsinghua University, Beijing, China, 2010. [Google Scholar]
- An, W.T.; Lin, M.S. A Reflection Symmetry Approximation of Multi-look Polarimetric SAR Data and its Application to Freeman-Durden Decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3649–3660. [Google Scholar] [CrossRef]
- An, W.; Lin, M.; Yang, H. Modified Reflection Symmetry Decomposition and a New Polarimetric Product of GF-3. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8019805. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.L.; An, W.T.; Cui, Y.; Yang, J. Nonlocal filtering for polarimetric SAR data: A pretest approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1744–1754. [Google Scholar] [CrossRef]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Novak, L.M.; Burl, M.C. Optimal speckle reduction in polarimetric SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 293–305. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Gao, Y.; Li, W.; Zhang, M.; Wang, J.; Sun, W.; Tao, R.; Du, Q. Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5512615. [Google Scholar] [CrossRef]
- User Manual of Gaofen-3 Satellite Products; China Resources Satellite Application Center: Beijing, China, 2016.
- Bentes, C.; Velotto, D.; Tings, B. Ship classification in TerraSAR-X images with convolutional neural networks. IEEE J. Ocean. Eng. 2018, 43, 258–266. [Google Scholar] [CrossRef]
- Sunaga, Y.; Natsuaki, R.; Hirose, A. Land form classification and similar land-shape discovery by using complex-valued convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7907–7917. [Google Scholar] [CrossRef]
- Hou, X.; Wei, A.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci. China Inf. Sci. 2020, 63, 140303. [Google Scholar] [CrossRef]
- China Ocean Satellite Data Service System. Available online: https://osdds.nsoas.org.cn/ (accessed on 30 October 2023).
Scheme | Parameters | Polarization Features |
---|---|---|
1 | 6 | NonP0, T22, T33, coe12, coe13, coe23 |
2 | 6 | P0, T22, T33, coe12, coe13, coe23 |
3 | 7 | P0, T11, T22, T33, coe12, coe13, coe23 |
4 | 7 | P0,T11, T22, T33, PS, PD, PV |
5 | 7 | P0, T11, T22, T33, P2, P3, PV |
6 | 9 | P0, T11, T22, T33, P2, P3, PS, PD, PV |
7 | 10 | P0, T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23) |
8 | 21 | P0, T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23), P2, P3, PS, PD, PV, x, y, a, b |
ID | Date | Time (UTC) | Inc. Angle (°) | Mode | Resolution | Use |
---|---|---|---|---|---|---|
1 | 2021.09.14 | 22:14:11 | 30.98 | QPSI | 8 m | Train |
2 | 2021.09.14 | 22:14:06 | 30.97 | QPSI | 8 m | Train |
3 | 2021.10.13 | 10:05:35 | 37.71 | QPSI | 8 m | Train |
4 | 2017.10.12 | 22:07:36 | 36.89 | QPSI | 8 m | Test |
Images | Nearshore Water | Seawater | Spartina Alterniflora | Tamarix | Reed | Tidal Flat | Suaeda Salsa |
---|---|---|---|---|---|---|---|
20210914_1 | 500 | 400 | 1000 | 500 | 500 | 500 | 500 |
20210914_2 | 500 | 200 | 0 | 0 | 0 | 500 | 0 |
20211013 | 0 | 400 | 0 | 500 | 500 | 0 | 500 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Classification Accuracy Input Scheme | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Nearshore water | 96.8 | 100 | 76.9 | 85.0 | 93.4 | 94.8 | 96.4 | 99.7 |
Seawater | 96.9 | 100 | 99.5 | 98.8 | 98.7 | 99.2 | 98.7 | 99.7 |
Spartina alterniflora | 96.8 | 100 | 93.3 | 93.2 | 85.2 | 92.9 | 95.5 | 100 |
Tamarix | 100 | 97.6 | 99.0 | 93.8 | 75.9 | 100 | 96.0 | 96.7 |
Reed | 94.5 | 98.3 | 93.4 | 63.7 | 93.3 | 94.9 | 99.2 | 100 |
Tidal flat | 49.3 | 16.2 | 49.5 | 78.6 | 85.5 | 61.1 | 71.6 | 90.6 |
Suaeda salsa | 50.8 | 92.7 | 98.4 | 97.6 | 95.1 | 99.4 | 98.2 | 100 |
Indepent experiments Overall Accuracy | 83.59 | 86.40 | 87.14 | 87.24 | 89.59 | 91.76 | 93.66 | 98.10 |
81.41 | 85.19 | 84.27 | 87.19 | 88.91 | 91.76 | 91.84 | 96.54 | |
77.83 | 82.64 | 84.01 | 85.37 | 86.30 | 87.69 | 91.06 | 96.44 | |
73.66 | 81.86 | 83.67 | 85.29 | 86.19 | 86.61 | 89.29 | 96.40 | |
68.87 | 81.53 | 83.66 | 84.96 | 85.30 | 86.60 | 89.33 | 96.36 | |
Average Overall Accuracy | 77.072 | 83.524 | 84.55 | 86.01 | 87.258 | 88.884 | 91.036 | 96.768 |
Kappa coefficient | 0.8085 | 0.8413 | 0.8500 | 0.8512 | 0.8785 | 0.9038 | 0.9260 | 0.9778 |
Classification Accuracy Input Scheme | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Nearshore water | 95.7 | 82.5 | 91.1 | 91.3 | 94.9 | 93.4 | 90.5 | 77.2 |
Seawater | 97.7 | 98.8 | 99.8 | 98.5 | 99.4 | 99.3 | 99.3 | 99.6 |
Spartina alterniflora | 96.6 | 95.9 | 94.1 | 95.7 | 93.5 | 94.9 | 98.7 | 100 |
Tamarix | 98.5 | 100 | 1000 | 67.5 | 100 | 89.6 | 99.9 | 90.8 |
Reed | 93.8 | 85.0 | 91.3 | 68.0 | 82.2 | 69.6 | 91.7 | 99.9 |
Tidal flat | 28.5 | 42.0 | 25.7 | 88.5 | 67.2 | 95.8 | 71.4 | 99.8 |
Suaeda salsa | 66.2 | 91.3 | 94.1 | 98.9 | 100 | 100 | 99.6 | 100 |
Indepent experiments Overall Accuracy | 82.43 | 85.07 | 85.16 | 86.91 | 91.03 | 91.80 | 93.01 | 95.33 |
82.21 | 85.03 | 84.66 | 86.63 | 88.99 | 90.61 | 92.03 | 94.93 | |
81.44 | 84.74 | 84.10 | 86.57 | 87.50 | 90.54 | 91.94 | 94.76 | |
79.44 | 82.06 | 83.64 | 84.90 | 86.77 | 90.43 | 91.29 | 92.96 | |
77.53 | 81.93 | 83.41 | 80.47 | 86.83 | 90.37 | 89.94 | 91.97 | |
Average Overall Accuracy | 80.61 | 83.766 | 84.194 | 85.096 | 88.224 | 90.75 | 91.642 | 93.99 |
Kappa coefficient | 0.7950 | 0.8258 | 0.8268 | 0.8473 | 0.8953 | 0.9043 | 0.9185 | 0.9455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Cui, L.; Zhang, Y.; Xia, T.; Dong, Z.; An, W. Research on Input Schemes for Polarimetric SAR Classification Using Deep Learning. Remote Sens. 2024, 16, 1826. https://doi.org/10.3390/rs16111826
Zhang S, Cui L, Zhang Y, Xia T, Dong Z, An W. Research on Input Schemes for Polarimetric SAR Classification Using Deep Learning. Remote Sensing. 2024; 16(11):1826. https://doi.org/10.3390/rs16111826
Chicago/Turabian StyleZhang, Shuaiying, Lizhen Cui, Yue Zhang, Tian Xia, Zhen Dong, and Wentao An. 2024. "Research on Input Schemes for Polarimetric SAR Classification Using Deep Learning" Remote Sensing 16, no. 11: 1826. https://doi.org/10.3390/rs16111826
APA StyleZhang, S., Cui, L., Zhang, Y., Xia, T., Dong, Z., & An, W. (2024). Research on Input Schemes for Polarimetric SAR Classification Using Deep Learning. Remote Sensing, 16(11), 1826. https://doi.org/10.3390/rs16111826