The Diverse Mountainous Landslide Dataset (DMLD): A High-Resolution Remote Sensing Landslide Dataset in Diverse Mountainous Regions
Abstract
:1. Introduction
2. Related Works
3. Landslide Dataset
3.1. Study Area
3.2. Data Source and Processing
3.2.1. Data Collection
3.2.2. Data Processing
3.2.3. Data Annotation
3.3. Dataset Analysis
4. Experiments and Result Analysis
4.1. Experiments Design
4.2. Experimental Settings
- 1.
- Data Augmentation
- 2.
- Parameter Configuration
4.3. Results and Analysis
4.3.1. Recognition Results with SOTA Models
4.3.2. Recognition Results with Different Loss Functions
4.3.3. Model Generalization Ability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide Detection Using Deep Learning and Object-Based Image Analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Ke, H.; Fang, X.; Zhan, Z.; Chen, S. Landslide Recognition by Deep Convolutional Neural Network and Change Detection. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4654–4672. [Google Scholar] [CrossRef]
- Samodra, G.; Chen, G.; Sartohadi, J.; Kasama, K. Generating Landslide Inventory by Participatory Mapping: An Example in Purwosari Area, Yogyakarta, Java. Geomorphology 2018, 306, 306–313. [Google Scholar] [CrossRef]
- Xu, C. Preparation of Earthquake-Triggered Landslide Inventory Maps Using Remote Sensing and GIS Technologies: Principles and Case Studies. Geosci. Front. 2015, 6, 825–836. [Google Scholar] [CrossRef]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Mihalić Arbanas, S.; Abolmasov, B. Landslide Assessment of the Strača Basin (Croatia) Using Machine Learning Algorithms. Acta Geotech. Slov. 2011, 8, 45–55. [Google Scholar]
- Goetz, J.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating Machine Learning and Statistical Prediction Techniques for Landslide Susceptibility Modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic Recognition of Landslide Based on CNN and Texture Change Detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Yang, Z.; Xu, C.; Li, L. Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments. Remote Sens. 2022, 14, 2885. [Google Scholar] [CrossRef]
- Alcorn, M.A.; Li, Q.; Gong, Z.; Wang, C.; Mai, L.; Ku, W.-S.; Nguyen, A. Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 4845–4854. [Google Scholar]
- Liu, Y.; Yao, X.; Gu, Z.; Zhou, Z.; Liu, X.; Chen, X.; Wei, S. Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau. Remote Sens. 2022, 14, 3362. [Google Scholar] [CrossRef]
- Hao, L.; Rajaneesh, A.; Van Westen, C.; Sajinkumar, K.S.; Martha, T.R.; Jaiswal, P.; McAdoo, B.G. Constructing a Complete Landslide Inventory Dataset for the 2018 Monsoon Disaster in Kerala, India, for Land Use Change Analysis. Earth Syst. Sci. Data 2020, 12, 2899–2918. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Xu, Y.; Ghamisi, P.; Kopp, M.; Kreil, D. Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Ji, S.; Yu, D.; Shen, C.; Li, W.; Xu, Q. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Meena, S.R.; Nava, L.; Bhuyan, K.; Puliero, S.; Soares, L.P.; Dias, H.C.; Floris, M.; Catani, F. HR-GLDD: A Globally Distributed Dataset Using Generalized Deep Learning (DL) for Rapid Landslide Mapping on High-Resolution (HR) Satellite Imagery. Earth Syst. Sci. Data 2023, 15, 3283–3298. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.; Nan, X.; Zhang, Z.; Lei, G. Postearthquake Landslides Mapping from Landsat-8 Data for the 2015 Nepal Earthquake Using a Pixel-Based Change Detection Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1758–1768. [Google Scholar] [CrossRef]
- Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-Oriented Change Detection for Landslide Rapid Mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 701–705. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [Google Scholar] [CrossRef]
- Zhu, M.; He, Y.; He, Q. A Review of Researches on Deep Learning in Remote Sensing Application. Int. J. Geosci. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Li, K.-Q.; Fu, J.-L.; Liu, Y. Hybrid LBM and Machine Learning Algorithms for Permeability Prediction of Porous Media: A Comparative Study. Comput. Geotech. 2024, 168, 106163. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ma, Y.; Wang, L.; Zhai, Y.; Wang, X. A Landslide Intelligent Detection Method Based on CNN and RSG_R. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 40–44. [Google Scholar]
- Prakash, N.; Manconi, A.; Loew, S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B. Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information. IEEE Access 2019, 7, 114363–114373. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W. A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection from Single-Temporal RapidEye Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6166–6176. [Google Scholar] [CrossRef]
- Chandra, N.; Sawant, S.; Vaidya, H. An Efficient U-Net Model for Improved Landslide Detection from Satellite Images. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 13–28. [Google Scholar] [CrossRef]
- Niu, C.; Ma, K.; Shen, X.; Wang, X.; Xie, X.; Tan, L.; Xue, Y. Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images. Land 2023, 12, 313. [Google Scholar] [CrossRef]
- Kang, Q.; Chen, E.J.; Li, Z.-C.; Luo, H.-B.; Liu, Y. Attention-Based LSTM Predictive Model for the Attitude and Position of Shield Machine in Tunneling. Undergr. Space 2023, 13, 335–350. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar] [CrossRef]
- Tang, X.; Tu, Z.; Wang, Y.; Liu, M.; Li, D.; Fan, X. Automatic Detection of Coseismic Landslides Using a New Transformer Method. Remote Sens. 2022, 14, 2884. [Google Scholar] [CrossRef]
- Huang, R.; Chen, T. Landslide Recognition from Multi-Feature Remote Sensing Data Based on Improved Transformers. Remote Sens. 2023, 15, 3340. [Google Scholar] [CrossRef]
- Qin, S.; Guo, X.; Sun, J.; Qiao, S.; Zhang, L.; Yao, J.; Cheng, Q.; Zhang, Y. Landslide Detection from Open Satellite Imagery Using Distant Domain Transfer Learning. Remote Sens. 2021, 13, 3383. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on Remote Sensing Methods for Landslide Detection Using Machine and Deep Learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Jia, H.; Zhang, J. Landslide Susceptibility Mapping Using Multiscale Sampling Strategy and Convolutional Neural Network: A Case Study in Jiuzhaigou Region. Catena 2020, 195, 104851. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.; Pun, M.-O.; Shi, W. Cross-Domain Landslide Mapping from Large-Scale Remote Sensing Images Using Prototype-Guided Domain-Aware Progressive Representation Learning. ISPRS J. Photogramm. Remote Sens. 2023, 197, 1–17. [Google Scholar] [CrossRef]
- Zhu, Y.; Hong, T.; Wang, J.; Luo, Y.; Yang, K. Landslide and Debris Flow Hazard Risk Analysis and Assessment in Yunnan Province. In Proceedings of the 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 19–21 July 2018; pp. 772–777. [Google Scholar]
- Tie, Y.; Ge, H.; Gao, Y.; Bai, Y. The Research Progress and Prospect of Geological Hazards in Southwest China since the 20th Century. Sediment. Geol. Tethyan Geol. 2022, 42, 653–665. [Google Scholar]
- Çellek, S. Effect of the Slope Angle and Its Classification on Landslide. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–23. [Google Scholar]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A Database and Web-Based Tool for Image Annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 1–12 June 2015; pp. 3431–3440. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A Convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-Imbalanced NLP Tasks. arXiv 2019, arXiv:1911.02855. [Google Scholar]
- Berman, M.; Triki, A.R.; Blaschko, M.B. The Lovász-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-over-Union Measure in Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4413–4421. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035. [Google Scholar] [CrossRef]
- MMSegmentation Contributors. MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark 2020. Available online: https://github.com/open-mmlab/mmsegmentation (accessed on 15 April 2024).
Terrain Region | County | Elevation (m) | Area (km²) | Number of Landslide Points |
---|---|---|---|---|
Western Alpine Gorge | Gongshan | 1170–5128 | 4379 | 61 |
Deqin | 1840.5–6740 | 7291 | 74 | |
Tengchong | 930–3870 | 5845 | 143 | |
Longling | 535–3001.6 | 2884 | 122 | |
Lianghe | 860–2672.8 | 1136 | 118 | |
Mangshi | 528–2889.1 | 2901 | 63 | |
Changning | 608–2875.9 | 3888 | 291 | |
Fengqing | 919–3098.7 | 3335 | 287 | |
Zhenyuan | 774–3137 | 4223 | 235 | |
Luchun | 320–2637 | 3097 | 204 | |
Central Laterite Plateau | Huaping | 1015–3198 | 2200 | 152 |
Xinping | 422–3165.9 | 4223 | 288 | |
Dayao | 1023–3657 | 4146 | 193 | |
Nanhua | 963–2861 | 2343 | 155 | |
Lufeng | 1309–2754 | 3536 | 136 | |
Chuxiong | 556–3657 | 4433 | 156 | |
Eastern Karst Plateau | Yongshan | 340–3199.5 | 2778 | 237 |
Huize | 695–4017.3 | 5884 | 371 | |
Xuanwei | 920–2868 | 6070 | 211 |
Models | Year | Characteristics |
---|---|---|
FCN [40] | 2015 | FCN uses fully convolutional layers instead of fully connected layers, which allows for capturing semantic information in images at different scales. |
PSPNet [41] | 2017 | PSPNet introduces a pyramid pooling module that performs pooling operations on feature maps at different scales to obtain global context information. |
DeepLabv3+ [42] | 2018 | DeepLabv3+ introduces dilated convolution and residual connections to increase the receptive field in order to efficiently capture contextual information in images. In addition, a spatial pyramid pooling module is utilized to fuse features of different scales, thus improving the accuracy of semantic segmentation. |
HRNet [43] | 2019 | HRNet retains the rich details in the image by constructing a high-resolution feature pyramid. It simultaneously retains the features at different resolutions, and interacts and fuses the information between different resolutions to fully utilize the multi-scale information. |
Swin Transformer [44] | 2021 | Swin Transformer uses shifted windows to process large size images by dividing the image into multiple windows and applying a local self-attention mechanism on each window, disguised as a global modeling capability through sliding windows. In addition, it uses a multi-scale merging strategy similar to CNN pooling to merge neighboring patches to increase the receptive field and acquire multi-scale feature information. |
SegFormer [45] | 2021 | SegFormer treats pixels as a sequence and applies self-attention mechanisms on the sequence to obtain global contextual information and long-range dependencies. In addition, it employs a hierarchical structure and multi-scale feature fusion strategy to capture information at different scales in the image. |
ConvNeXt [46] | 2022 | ConvNeXt is a pure convolutional network inspired by the principles of Transformer. It takes the ResNet structure as a backbone, and borrows the ideas of Swin Transformer in terms of stage computation ratio, convolution, and optimization strategy, and improves them step-by-step. |
Loss Functions | Formulas | Description |
---|---|---|
Binary CrossEntropy Loss | (1) where is the total number of pixels, is the true label of pixel , and is the predicted probability of pixel by the model. | It is used in binary classification problems to measure the difference between predicted probabilities and true labels. |
Focal Loss [47] | (2) where is the probability predicted by the model for a positive sample, is a hyperparameter used to adjust the balance between positive and negative samples, and is a hyperparameter used to adjust the importance of difficult samples. | To address the class imbalance problem, it can improve the performance of the model on difficult samples by adjusting the weight of the loss function and reducing the weight of the samples that are easy to classify. |
BCE Loss + Dice Loss [48] | (3) where is the true binary label, is the predicted output of the model, is the number of samples, and is a very small constant used to avoid division by zero. (4) where BCE is the value of BCE Loss, “DICE” is the value of Dice Loss, and is a scaling hyperparameter. | For class imbalance problems, it can mitigate the adverse effects of an oversized foreground area in the sample. When combined with BCE Loss, the instability of Dice Loss can be alleviated when the overlap between the predicted results and the real label is very small. |
Lovasz Loss [49] | (5) where is the true label, is the model’s predicted output, and is the number of samples. | For class imbalance problems, Lovasz Loss does not rely on the global class distribution, but instead focuses on the similarity between the prediction results and the true label of each sample or pixel, which facilitates the model’s ability to learn better boundaries. |
IoU | Precision | Recall | F1 Score | Params | GFlops | |
---|---|---|---|---|---|---|
FCN-r50 | 81.03 | 96.39 | 83.57 | 89.52 | 49.48 m | 197.69 |
FCN-r101 | 84.45 | 96.93 | 86.77 | 91.57 | 68.48 m | 275.37 |
PSPNet-r50 | 75.53 | 98.61 | 76.35 | 86.06 | 48.96 m | 178.44 |
PSPNet-r101 | 83.89 | 98.46 | 85.01 | 91.24 | 67.95 m | 256.13 |
DeepLabv3+-r50 | 79.9 | 97.81 | 81.36 | 88.83 | 43.59 m | 176.36 |
DeepLabv3+-r101 | 84.14 | 98.07 | 85.56 | 91.39 | 62.57 m | 253.9 |
HRNet-18 | 73.38 | 95.37 | 76.1 | 84.65 | 9.64 m | 18.42 |
HRNet-48 | 82.85 | 97.4 | 84.72 | 90.62 | 65.85 m | 93.38 |
SegFormer-b4 | 89.17 | 97.12 | 91.6 | 94.28 | 61.37 m | 40.61 |
SegFormer-b5 | 89.51 | 97.03 | 92.03 | 94.47 | 81.97 m | 51.83 |
Swin-base | 85.59 | 94.2 | 90.35 | 92.24 | 121.17 m | 296.04 |
Swin-large | 82.98 | 94.32 | 87.34 | 90.7 | 233.65 m | 654.43 |
ConvNeXt-base | 90.59 | 96.0 | 94.14 | 95.06 | 121.99 m | 291.17 |
ConvNeXt-large | 88.54 | 95.25 | 92.63 | 93.92 | 234.88 m | 651.53 |
IoU | Precision | Recall | F1 Score | |
---|---|---|---|---|
CrossEntropy Loss | 90.59 | 96.00 | 94.14 | 95.06 |
BCE Loss + Dice Loss | 88.31 | 95.36 | 92.28 | 93.79 |
Focal Loss | 87.17 | 95.59 | 90.82 | 93.14 |
Lovasz Loss | 87.64 | 94.7 | 92.16 | 93.41 |
IoU | Precision | Recall | F1 Score | |
---|---|---|---|---|
FCN | 58.41 | 89.63 | 62.64 | 73.75 |
PSPNet | 27.42 | 74.97 | 30.18 | 43.03 |
DeepLabv3+ | 23.44 | 93.95 | 23.80 | 37.98 |
HRNet | 47.32 | 62.57 | 65.99 | 64.24 |
SegFormer | 37.08 | 65.23 | 46.22 | 54.10 |
Swin Transformer | 27.20 | 59.21 | 33.47 | 42.77 |
ConvNeXt | 17.95 | 72.99 | 19.22 | 30.43 |
IoU | Precision | Recall | F1 Score | |
---|---|---|---|---|
FCN | 51.73 | 83.01 | 57.86 | 68.19 |
PSPNet | 28.44 | 94.98 | 28.88 | 44.30 |
DeepLabv3+ | 26.30 | 95.39 | 26.64 | 41.65 |
HRNet | 50.75 | 84.09 | 56.14 | 67.33 |
SegFormer | 36.88 | 87.47 | 38.94 | 53.89 |
Swin Transformer | 41.28 | 88.23 | 43.68 | 58.43 |
ConvNeXt | 36.95 | 57.39 | 50.93 | 53.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zeng, X.; Zhu, J.; Guo, Y.; Hong, L.; Deng, M.; Chen, K. The Diverse Mountainous Landslide Dataset (DMLD): A High-Resolution Remote Sensing Landslide Dataset in Diverse Mountainous Regions. Remote Sens. 2024, 16, 1886. https://doi.org/10.3390/rs16111886
Chen J, Zeng X, Zhu J, Guo Y, Hong L, Deng M, Chen K. The Diverse Mountainous Landslide Dataset (DMLD): A High-Resolution Remote Sensing Landslide Dataset in Diverse Mountainous Regions. Remote Sensing. 2024; 16(11):1886. https://doi.org/10.3390/rs16111886
Chicago/Turabian StyleChen, Jie, Xu Zeng, Jingru Zhu, Ya Guo, Liang Hong, Min Deng, and Kaiqi Chen. 2024. "The Diverse Mountainous Landslide Dataset (DMLD): A High-Resolution Remote Sensing Landslide Dataset in Diverse Mountainous Regions" Remote Sensing 16, no. 11: 1886. https://doi.org/10.3390/rs16111886
APA StyleChen, J., Zeng, X., Zhu, J., Guo, Y., Hong, L., Deng, M., & Chen, K. (2024). The Diverse Mountainous Landslide Dataset (DMLD): A High-Resolution Remote Sensing Landslide Dataset in Diverse Mountainous Regions. Remote Sensing, 16(11), 1886. https://doi.org/10.3390/rs16111886