Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data and Processing Method
2.2.1. Space-Borne Scatterometer Data (ASCAT VV Data)
2.2.2. SAR (Sentinel-1 HH Data)
2.2.3. ERA-5 Data
2.2.4. Canadian Ice Service Digital Archive (CISDA)
2.2.5. Validation Data
3. PO Detection Algorithm Development
3.1. Selection of Sample Points
3.2. Dual-Sensor Co-Pol Ratio
3.3. Pond Onset Thresholds’ Development
3.3.1. Co-Pol Ratio Threshold
3.3.2. Wind Speed Threshold
3.3.3. Air Temperature Threshold
3.4. Validation
4. Results and Discussion
4.1. Factors Affecting the Co-Pol Ratio
4.2. C-Band Statistics for PO Date Detection
4.3. Co-Pol Ratio Time Series
4.3.1. FYI
4.3.2. MYI
4.4. Spatial and Temporal Variability of PO Date (2017 and 2018)
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C.; et al. An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circula. Front. Mar. Sci. 2021, 8, 642372. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Alegría, A.; Nicolai, M.; Okem, A.; Petzold, J.; Rama, B.; Weyer, N.M. The Ocean and Cryosphere in a Changing Climate. In Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Markus, T.; Stroeve, J.C.; Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Maslanik, J.; Stroeve, J.; Fowler, C.; Emery, W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Wensnahan, M.; Rigor, I.; Zwally, H.J.; Yi, D. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. Ocean. 2009, 114, 7005. [Google Scholar] [CrossRef]
- Curry, J.A.; Schramm, J.L.; Ebert, E.E. Sea Ice-Albedo Climate Feedback Mechanism. Source J. Clim. 1995, 8, 240–247. [Google Scholar] [CrossRef]
- Lee, S.; Stroeve, J.; Tsamados, M.; Khan, A.L. Machine learning approaches to retrieve pan-Arctic melt ponds from visible satellite imagery. Remote Sens. Environ. 2020, 247, 111919. [Google Scholar] [CrossRef]
- Fetterer, F.; Untersteiner, N. Observations of melt ponds on Arctic sea ice. J. Geophys. Res 2000, 103, 821–835. [Google Scholar] [CrossRef]
- Perovich, D.K.; Grenfell, T.C.; Light, B.; Hobbs, P.V. Seasonal evolution of the albedo of multiyear Actic sea ice. J. Geophys. Res. C Ocean. 2002, 107, SHE 20-1–SHE 20-13. [Google Scholar] [CrossRef]
- Eicken, H.; Grenfell, T.C.; Perovich, D.K.; Richter-Menge, J.A.; Frey, K. Hydraulic controls of summer Arctic pack ice albedo. J. Geophys. Res. C Ocean. 2004, 109. [Google Scholar] [CrossRef]
- Scharien, R.K.; Segal, R.; Nasonova, S.; Nandan, V.; Howell, S.E.L.; Haas, C. Winter Sentinel-1 Backscatter as a Predictor of Spring Arctic Sea Ice Melt Pond Fraction. Geophys. Res. Lett. 2017, 44, 12262–12270. [Google Scholar] [CrossRef]
- Eicken, H.; Krouse, H.R.; Kadko, D.; Perovich, D.K. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. Ocean. 2002, 107, SHE 22-1–SHE 22-20. [Google Scholar] [CrossRef]
- Polashenski, C.; Perovich, D.; Courville, Z. The mechanisms of sea ice melt pond formation and evolution. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Scharien, R.K.; Landy, J.; Barber, D.G. First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR—Part 1: In situ observations. Cryosphere 2014, 8, 2147–2162. [Google Scholar] [CrossRef]
- Yackel, J.J.; Barber, D.G. Melt ponds on sea ice in the Canadian Archipelago: 2. on the use of RADARSAT-1 synthetic aperture radar for geophysical inversion. J. Geophys. Res. Ocean. 2000, 105, 22061–22070. [Google Scholar] [CrossRef]
- Istomina, L.; Heygster, G.; Huntemann, M.; Schwarz, P.; Birnbaum, G.; Scharien, R.; Polashenski, C.; Perovich, D.; Zege, E.; Malinka, A.; et al. Melt pond fraction and spectral sea ice albedo retrieval from MERIS data—Part 1: Validation against in situ, aerial, and ship cruise data. Cryosphere 2015, 9, 1551–1566. [Google Scholar] [CrossRef]
- Markus, T.; Cavalieri, D.J.; Tschudi, M.A.; Ivanoff, A. Comparison of aerial video and Landsat 7 data over ponded sea ice. Remote Sens. Environ. 2003, 86, 458–469. [Google Scholar] [CrossRef]
- Rösel, A.; Kaleschke, L.; Birnbaum, G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network. Cryosphere 2012, 6, 431–446. [Google Scholar] [CrossRef]
- Tschudi, M.A.; Maslanik, J.A.; Perovich, D.K. Derivation of melt pond coverage on Arctic sea ice using MODIS observations. Remote Sens. Environ. 2008, 112, 2605–2614. [Google Scholar] [CrossRef]
- Zege, E.; Malinka, A.; Katsev, I.; Prikhach, A.; Heygster, G.; Istomina, L.; Birnbaum, G.; Schwarz, P. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data. Remote Sens. Environ. 2015, 163, 153–164. [Google Scholar] [CrossRef]
- Han, H.; Im, J.; Kim, M.; Sim, S.; Kim, J.; Kim, D.; Kang, S.-H. Retrieval of Melt Ponds on Arctic Multiyear Sea Ice in Summer from TerraSAR-X Dual-Polarization Data Using Machine Learning Approaches: A Case Study in the Chukchi Sea with Mid-Incidence Angle Data. Remote Sens. 2016, 8, 57. [Google Scholar] [CrossRef]
- Belchansky, G.I.; Douglas, D.C.; Platonov, N.G. Duration of the Arctic Sea Ice Melt Season: Regional and Interannual Variability, 1979–2001. J. Clim. 2004, 17, 67–80. [Google Scholar]
- Scharien, R.K.; Yackel, J.J.; Barber, D.G.; Asplin, M.; Gupta, M.; Isleifson, D. Geophysical controls on C band polarimetric backscatter from melt pond covered Arctic first-year sea ice: Assessment using high-resolution scatterometry. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Marshall, S.; Scott, K.A.; Scharien, R.K. Passive Microwave Melt Onset Retrieval Based on a Variable Threshold: Assessment in the Canadian Arctic Archipelago. Remote Sens. 2019, 11, 1304. [Google Scholar] [CrossRef]
- Ramjan, S.; Geldsetzer, T.; Scharien, R.; Yackel, J. Predicting melt pond fraction on landfast snow covered first year sea ice from winter C-band SAR backscatter utilizing linear, polarimetric and texture parameters. Remote Sens. 2018, 10, 1603. [Google Scholar] [CrossRef]
- Howell, S.E.L.; Tivy, A.; Yackel, J.J.; Else, B.G.T.; Duguay, C.R. Changing sea ice melt parameters in the Canadian Arctic Archipelago: Implications for the future presence of multiyear ice. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Mortin, J.; Howell, S.E.L.; Wang, L.; Derksen, C.; Svensson, G.; Graversen, R.G.; Schrøder, T.M. Extending the QuikSCAT record of seasonal melt-freeze transitions over Arctic sea ice using ASCAT. Remote Sens. Environ. 2014, 141, 214–230. [Google Scholar] [CrossRef]
- Onstott, R.G. SAR and scatterometer signatures of sea ice. Geophys. Monogr. Ser. 1992, 68, 73–104. [Google Scholar]
- Schroeder, D. Arctic sea ice. In Climate Change, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 111–122. [Google Scholar] [CrossRef]
- Long, D.G. Polar Applications of Spaceborne Scatterometers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2307. [Google Scholar] [CrossRef]
- Scharien, R.K.; Hochheim, K.; Landy, J.; Barber, D.G. First-year sea ice melt pond fraction estimation from dual-polarisation C-band SAR—Part 2: Scaling in situ to Radarsat-2. Cryosphere 2014, 8, 2163–2176. [Google Scholar] [CrossRef]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–400. [Google Scholar] [CrossRef]
- Thomsen, B.B.; Nghiem, S.V.; Kwok, R. Polarimetric C-band SAR observations of sea ice in the Greenland Sea. Int. Geosci. Remote Sens. Symp. 1998, 5, 2502–2504. [Google Scholar] [CrossRef]
- Scheuchl, B.; Flett, D.; Caves, R.; Cumming, I. Potential of RADARSAT-2 data for operational sea ice monitoring Potential of RADARSAT-2 data for operational sea ice monitoring. Can. J. Remote Sens. 2014, 30, 448–461. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Bertoia, C.; Bertoia, C. Study of Multi-Polarization C-Band Backscatter Signatures for Arctic Sea Ice Mapping with Future Satellite SAR. Can. J. Remote Sens. 2001, 27, 387–402. [Google Scholar] [CrossRef]
- Geldsetzer, T.; Yackel, J.J. Sea ice type and open water discrimination using dual co-polarized c-band SAR. Can. J. Remote Sens. 2009, 35, 73–84. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R.; Lou, S.-H.; Tsai, W.-Y. Sea Ice Identification Using Dual-Polarized Ku-Band Scatterometer Data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 560–569. [Google Scholar] [CrossRef]
- Beaven, S.G.; Gogineni, S.P.; Tjuatja, S.; Fung, A.K. Model-based interpretation of ERS-1 SAR images of Arctic sea ice. Int. J. Remote Sens. 1997, 18, 2483–2503. [Google Scholar] [CrossRef]
- Scharien, R.K.; Yackel, J.J.; Granskog, M.A.; Else, B.G.T. Coincident high resolution optical-SAR image analysis for surface albedo estimation of first-year sea ice during summer melt. Remote Sens. Environ. 2007, 111, 160–171. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Nandan, V.; Howell, S.E.; Geldsetzer, T.; Yackel, J. Seasonal evolution of L-band SAR backscatter over landfast Arctic sea ice. Remote Sens. Environ. 2020, 251, 112049. [Google Scholar] [CrossRef]
- Howell, S.E.L.; Duguay, C.R.; Markus, T. Sea ice conditions and melt season duration variability within the Canadian Arctic Archipelago: 1979–2008. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Howell, S.E.L.; Yackel, J.J.; De Abreu, R.; Geldsetzer, T.; Breneman, C. On the Utility of SeaWinds/QuikSCAT Data for the Estimation of the Thermodynamic State of First-Year Sea Ice. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1338–1350. [Google Scholar] [CrossRef]
- EUMETSAT. EUMETSAT ASCAT User Guide; EUMETSAT: Darmstadt, Germany. 2022, p. 167. Available online: https://www-cdn.eumetsat.int/files/2022-12/ASCAT%20User%20Guide.pdf (accessed on 1 April 2024).
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time series missing value imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Geldsetzer, T.; Howell, S.E.L.; Yackel, J.J.; Nandan, V.; Scharien, R.K. Incidence angle dependence of HH-polarized C- A nd L-band wintertime backscatter over arctic sea ice. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6686–6698. [Google Scholar] [CrossRef]
- Howell, S.E.L.; Small, D.; Rohner, C.; Mahmud, M.S.; Yackel, J.J.; Brady, M. Estimating melt onset over Arctic sea ice from time series multi-sensor Sentinel-1 and RADARSAT-2 backscatter. Remote Sens. Environ. 2019, 229, 48–59. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Nandan, V.; Scharien, R.; Geldsetzer, T.; Mahmud, M.; Yackel, J.J.; Islam, T.; Gill, J.P.S.; Fuller, M.C.; Gunn, G.; Duguay, C. Geophysical and atmospheric controls on Ku-, X-and C-band backscatter evolution from a saline snow cover on first-year sea ice from late-winter to pre-early melt. Remote Sens. Environ. 2017, 198, 425–441. [Google Scholar] [CrossRef]
- Scharien, R.K.; Yackel, J.J. Analysis of Surface Roughness and Morphology of First-Year Sea Ice Melt Ponds: Implications for Microwave Scattering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2927–2939. [Google Scholar] [CrossRef]
- Fors, A.S.; Divine, D.V.; Doulgeris, A.P.; Renner, A.H.H.; Gerland, S. Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery. Cryosphere 2017, 11, 755–771. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Howell, S.E.L.; Geldsetzer, T.; Yackel, J. Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997-2014. Remote Sens. Environ. 2016, 178, 59–69. [Google Scholar] [CrossRef]
- Yackel, J.J.; Barber, D.G. Observations of Snow Water Equivalent Change on Landfast First-Year Sea Ice in Winter Using Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1005–1015. [Google Scholar] [CrossRef]
- Winebrenner, D.P.; Nelson, E.D.; Colony, R.; West, R.D. Observation of melt onset on multiyear Arctic sea ice using the ERS I synthetic aperture radar. J. Geophys. Res. 1994, 99, 425–447. [Google Scholar] [CrossRef]
- Yackel, J.J.; Barber, D.G.; Papakyriakou, T.N.; Breneman, C. First-year sea ice spring melt transitions in the Canadian Arctic Archipelago from time-series synthetic aperture radar data, 1992–2002. Process 2007, 21, 253–265. [Google Scholar] [CrossRef]
- Comiso, J.C.; Kwok, R. Surface and radiative characteristics of the summer Arctic sea ice cover from multisensor satellite observations. J. Geophys. Res. C Ocean. 1996, 101, 28397–28416. [Google Scholar] [CrossRef]
- Jeffries, M.O.; Schwartz, K.; Li, S. Arctic summer sea-ice SAR signatures, melt-season characteristics, and melt-pond fractions. Polar Rec. 1997, 33, 101–112. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Perovich, D.K. Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
- Lee, S.; Stroeve, J.; Webster, M.; Fuchs, N.; Perovich, D.K. Inter-comparison of melt pond products from optical satellite imagery. Remote Sens. Environ. 2024, 301, 113920. [Google Scholar] [CrossRef]
- Casey, J.A.; Howell, S.E.L.; Tivy, A.; Haas, C. Separability of sea ice types from wide swath C- and L-band synthetic aperture radar imagery acquired during the melt season. Remote Sens. Environ. 2016, 174, 314–328. [Google Scholar] [CrossRef]
- Barber, D.G.; Yackel, J. The physical, radiative and microwave scattering characteristics of melt ponds on arctic landfast sea ice. Int. J. Remote Sens. 1999, 20, 2069–2090. [Google Scholar] [CrossRef]
- Livingstone, C.E.; Singh, K.P.; Gray, A.L. Seasonal and Regional Varations of Active/Passive Microwave Signatures of Sea Ice. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 159–173. [Google Scholar] [CrossRef]
- Barber, D.G.; Nghiem, S.V. The role of snow on the thermal dependence of microwave backscatter over sea ice. J. Geophys. Res. Ocean. 1999, 104, 25789–25803. [Google Scholar] [CrossRef]
- Yackel, J.J.; Barber, D.G.; Papakyriakou, T.N. On the estimation of spring melt in the North Water polynya using RADARSAT-1. Atmos.-Ocean 2001, 39, 195–208. [Google Scholar] [CrossRef]
Year | FYI Overall PO Detection Percentage | MYI Overall PO Detection Percentage | ||||
---|---|---|---|---|---|---|
2017 | 61.75 | 67.6 | 70.59 | 73.07 | 76.9 | 92.3 |
2018 | 57.7 | 57.7 | 61.53 | 64 | 64 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maknun, S.S.; Geldsetzer, T.; Nandan, V.; Yackel, J.; Mahmud, M. Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach. Remote Sens. 2024, 16, 2091. https://doi.org/10.3390/rs16122091
Maknun SS, Geldsetzer T, Nandan V, Yackel J, Mahmud M. Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach. Remote Sensing. 2024; 16(12):2091. https://doi.org/10.3390/rs16122091
Chicago/Turabian StyleMaknun, Syeda Shahida, Torsten Geldsetzer, Vishnu Nandan, John Yackel, and Mallik Mahmud. 2024. "Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach" Remote Sensing 16, no. 12: 2091. https://doi.org/10.3390/rs16122091
APA StyleMaknun, S. S., Geldsetzer, T., Nandan, V., Yackel, J., & Mahmud, M. (2024). Detecting Melt Pond Onset on Landfast Arctic Sea Ice Using a Dual C-Band Satellite Approach. Remote Sensing, 16(12), 2091. https://doi.org/10.3390/rs16122091