Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Data Set and Preprocessing
3.2. Detection and Filling of Missing Pixels Due to Clouds or Shadows
3.3. Reflectance Time-Series Classification
3.3.1. Training Areas and Classification Scheme
3.3.2. Features
- Tasseled cap brightness (TCB) [77] attempts to highlight spectral information from satellite imagery that detects variations in soil reflectance (Equation (3)):
3.3.3. Models
3.4. Validation
4. Results
4.1. Cloud Removal
4.2. Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
DL | Deep Learning |
DPSVI | Dual Polarization SAR Vegetation Index |
ESA | European Spatial Agency |
GRD | Ground Range Detected |
IW | Interferometric Wide |
LSTM | Long Short Term Memory |
LULC | Land Use and Land Cover |
NDBI | Normalized Bald Index |
NDVI | Normalized Vegetation Index |
NDWI | Normalized Water Index |
PNOA | Spanish Plan of National Ortophotography |
RF | Random Forest |
RNN | Recurrent Neural Network |
RS | Remote Sensing |
SAR | Synthetic Aperture Radar |
TOA | Top Of the Atmosphere |
References
- Watson, R.; Noble, I.R.; Bolin, B.; Ravindranath, N.; Verardo, D.; Dokken, D. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mason, P.; Manton, M.; Harrison, D.; Belward, A.; Thomas, A.; Dawson, D. The Second Report on the Adequacy of the Global Observing Systems for Climate in Support of the UNFCCC. Technical Report 82, 74, GCOS Rep. 2003. Available online: https://stratus.ssec.wisc.edu/igos/docs/Second_Adequacy_Report.pdf (accessed on 6 June 2024).
- Naeem, S.; Cao, C.; Fatima, K.; Acharya, B. Landscape greening policies-based land use/land cover simulation for Beijing and Islamabad—An implication of sustainable urban ecosystems. Sustainability 2018, 10, 1049. [Google Scholar] [CrossRef]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef]
- Wambugu, N.; Chen, Y.; Xiao, Z.; Wei, M.; Bello, S.; Junior, J.; Li, J. A Hybrid Deep Convolutional Neural Network for Accurate Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102515. [Google Scholar] [CrossRef]
- Yao, X.; Yang, H.; Wu, Y.; Wu, P.; Wang, B.; Zhou, X.; Wang, S. Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features. Sensors 2019, 19, 2792. [Google Scholar] [CrossRef] [PubMed]
- Andrew, M.; Wulder, M.; Nelson, T. Potential contributions of remote sensing to ecosystem service assessments. Prog. Phys. Geogr. 2014, 38, 328–353. [Google Scholar] [CrossRef]
- European Union. Commission implementing regulation (eu) 2018/746 of 18 May 2018 amending implementing regulation (eu) no 809/2014 as regards modification of single applications and payment claims and checks. Off. J. Eur. Union 2018, 61, 1–7. [Google Scholar]
- Campos-Taberner, M.; García-Haro, F.; Martínez, B.; Izquierdo-Verdiguier, E.; Atzberger, C.; Camps-Valls, G.; Gilabert, M. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci. Rep. 2020, 10, 17188. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, J.; Wang, L.; Liang, D.; Cao, Q.; Zhang, W.; Peng, J. Land-Cover Classification With Time-Series Remote Sensing Images by Complete Extraction of Multiscale Timing Dependence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1953–1967. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; Romero-Soriano, A.; Gatta, C.; Camps-Valls, G.; Lagrange, A.; Le Saux, B.; Tuia, D. Processing of extremely high-resolution lidar and RGB data: Outcome of the 2015 IEEE GRSS data fusion contest-part a: 2-d contest. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 5547–5559. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Li, X.; Wu, X. Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition. arXiv 2015, arXiv:1410.4281. [Google Scholar]
- Murad, A.; Pyun, J.Y. Deep Recurrent Neural Networks for Human Activity Recognition. Sensors 2017, 17, 2556. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Mou, L.; Bruzzone, L.; Zhu, X. Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 924–935. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Simón-Sánchez, A.; González-Piqueras, J.; de la Ossa, L.; Calera, A. Convolutional Neural Networks for Agricultural Land Use Classification from Sentinel-2 Image Time Series. Remote Sens. 2022, 14, 5373. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.; Wulder, M. Optical remotely sensed time series data for land cover classification: A review. Isprs J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Roberts, D. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 2002, 80, 143–156. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.; Wulder, M.; Alejandro, P. Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS J. Photogramm. Remote Sens. 2014, 93, 14–28. [Google Scholar] [CrossRef]
- Franklin, S.; Ahmed, O.; Wulder, M.; White, J.; Hermosilla, T.; Coops, N. Large area mapping of annual land cover dynamics using multi-temporal change detection and classification of Landsat time-series data. Can. J. Remote Sens. 2015, 41, 293–314. [Google Scholar] [CrossRef]
- Gomariz-Castillo, F.; Alonso-Sarria, F.; Cánovas-García, F. Improving Classification Accuracy of Multi-Temporal Landsat Images by Assessing the Use of Different Algorithms, Textural and Ancillary Information for a Mediterranean Semiarid Area from 2000 to 2015. Remote Sens. 2017, 9, 1058. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2014, 156, 490–499. [Google Scholar] [CrossRef]
- Senf, C.; Leitão, P.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Valdivieso-Ros, C.; Alonso-Sarria, F.; Gomariz-Castillo, F. Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms. Remote Sens. 2023, 15, 312. [Google Scholar] [CrossRef]
- Aschbacher, J.; Milagro-Pérez, M. The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sens. Environ. 2012, 120, 3–8. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.; Levelt, P.; Hanssen, R. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine LEarning with Scikit-Learn, Keras, and TensorFlow; O’Reilly: Sebastopol, CA, USA, 2019. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sens. 2016, 8, 506. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D convolutional neural networks for crop classification with multi-temporal remote sensing images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of three deep learning models for early crop classification using sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Xie, Q.; Baz, A.A.; Huang, X.; Shang, J.; He, Y. Synergistic use of multi-temporal RADARSAT-2 and Venμs data for crop classification based on 1D convolutional neural network. Remote Sens. 2020, 12, 832. [Google Scholar] [CrossRef]
- Xue, R.; Bai, X.; Zhou, F. Spatial-temporal ensemble convolution for sequence SAR target classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1250–1262. [Google Scholar] [CrossRef]
- Rußwurm, M.; Korner, M. Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21 July 2017; pp. 1496–1504. [Google Scholar]
- Ruiz, L.; Almonacid-Caballer, J.; Crespo-Peremarch, P.; Recio, J.; Pardo-Pascual, J.E.; Sánchez-García, E. Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 1061–1068. [Google Scholar] [CrossRef]
- Portalés-Julià, E.; Campos-Taberner, M.; García-Haro, F.; Gilabert, M. Assessing the sentinel-2 capabilities to identify abandoned crops using deep learning. Agronomy 2021, 11, 654. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.K.P.; Yuan, Q.; Yan, L.; Sun, J. An Adaptive Weighted Tensor Completion Method for the Recovery of Remote Sensing Images with Missing Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3367–3381. [Google Scholar] [CrossRef]
- White, J.; Wulder, M.; Hobart, G.; Luther, J.; Hermosilla, T.; Griffiths, P.; Coops, N.; Hall, R.; Hostert, P.; Dyk, A.; et al. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- Skakun, S.E.A. Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhu, X.; Ge, Y.; Tong, X.; Atkinson, P. Remote sensing image gap filling based on spatial-spectral random forests. Sci. Remote Sens. 2022, 5, 100048. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Sadiq, A.; Sulong, G.; Edwar, L. Recovering defective Landsat 7 Enhanced Thematic Mapper Plus images via multiple linear regression model. Iet Comput. Vis. 2016, 10, 788–797. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Zhao, H.; Duan, S.; Liu, J.; Sun, L.; Reymondin, L. Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information. Remote Sens. 2021, 13, 2790. [Google Scholar] [CrossRef]
- Pringle, M.J.; Schmidt, M.; Muir, J.S. Geostatistical interpolation of SLC-off Landsat ETM+ images. Isprs J. Photogramm. Remote Sens. 2009, 64, 654–664. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Civco, D. Application of geographically weighted regression to fill gaps in SLC-off Landsat ETM+ satellite imagery. Int. J. Remote Sens. 2014, 35, 7650–7672. [Google Scholar] [CrossRef]
- Makarau, A.; Richter, R.; Schlapfer, D.; Reinartz, P. Combined Haze and Cirrus Removal for Multispectral Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 379–383. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Lv, H.; Qian, J. Removal of thin clouds using cirrus and QA bands of Landsat-8. Photogramm. Eng. Remote Sens. 2015, 81, 721–731. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Lv, H.; Qian, J. Removal of Thin Clouds in Landsat-8 OLI Data with Independent Component Analysis. Remote Sens. 2015, 7, 11481–11500. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [Google Scholar] [CrossRef]
- Gladkova, I.; Grossberg, M.; Bonev, G.; Romanov, P.; Shahriar, F. Increasing the Accuracy of MODIS/Aqua Snow Product Using Quantitative Image Restoration Technique. IEEE Geosci. Remote Sens. Lett. 2012, 9, 740–743. [Google Scholar] [CrossRef]
- Xin, Q.; Olofsson, P.; Zhu, Z.; Tan, B.; Woodcock, C.E. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. Environ. 2013, 135, 234–247. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, J.; Li, Z.; Shen, H.; Zhang, L. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. Isprs J. Photogramm. Remote Sens. 2020, 162, 148–160. [Google Scholar] [CrossRef]
- Sarukkai, V.; Jain, A.; Uzkent, B.; Ermon, S. Cloud removal from satellite images using spatiotemporal generator networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1796–1805. [Google Scholar]
- Ebel, P.; Xu, Y.; Schmitt, M.; Zhu, X.X. SEN12MS-CR-TS: A Remote-Sensing Data Set for Multimodal Multitemporal Cloud Removal. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5222414. [Google Scholar] [CrossRef]
- Sebastianelli, A.; Nowakowski, A.; Puglisi, E.; Rosso, M.P.D.; Mifdal, J.; Pirri, F.; Mathieu, P.P.; Ullo, S.L. Spatio-Temporal SAR-Optical Data Fusion for Cloud Removal via a Deep Hierarchical Model. arXiv 2022, arXiv:2106.12226v3. [Google Scholar]
- Berberoglu, S.; Curran, P.; Lloyd, C.; Atkinson, P. Texture classification of Mediterranean land cover. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 322–334. [Google Scholar] [CrossRef]
- Lasanta, T.; Vicente-Serrano, S. Complex Land Cover Change Processes in Semiarid Mediterranean Regions: An Approach Using Landsat Images in Northeast Spain. Remote Sens. Environ. 2012, 124, 1–14. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Sarria, F.; Valdivieso-Ros, C.; Gomariz-Castillo, F. Isolation forests to evaluate class separability and the representativeness of training and validation areas in land cover classification. Remote Sens. 2019, 11, 3000. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Dietz, A.; Kuenzer, C. Global WaterPack—A 250 m resolution dataset revealing the daily dynamics of global inland water bodies. Remote Sens. Environ. 2017, 198, 345–362. [Google Scholar] [CrossRef]
- Mostafiz, C.; Chang, N. Tasseled cap transformation for assessing hurricane landfall impact on a coastal watershed. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 736–745. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Grussenmeyer, P.; Koehl, M. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 2018, 219, 259–270. [Google Scholar] [CrossRef]
- Hong, C.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. Satellite data indicates multidimensional variation of agricultural production in land consolidation area. Sci. Total Environ. 2019, 653, 735–747. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Technical report, Remote Sens. Center Tex. A&M Univ. Coll. Stn., A&M Univ. Coll. Stn.; NASA: Washington, DC, USA, 1973.
- Kauth, R.; Thomas, G. The Tasselled-Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976; Purdue University: West Lafayette, IN, USA, 1976; pp. 41–51. [Google Scholar]
- Nedkov, R. Orthogonal transformation of segmented images from the satellite Sentinel-2. Comptes Rendus L’Academie Bulg. Des Sci. 2017, 70, 687–692. [Google Scholar]
- Chen, X.; Zhao, H.; Li, P.; Yin, Z. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalized difference water index (NDWI) to enhanced open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Haralick, R. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. Multidiscip. Digit. Publ. Inst. Proc. 2019, 18, 11. [Google Scholar]
- Rossiter, D. Technical Note: Statistical Methods for Accuracy Assesment of Classified Thematic Maps; Technical report; Department of Earth Systems Analysis International Institute for Geo-information Science & Earth Observation (ITC): Enschede NL, USA, 2004. [Google Scholar]
- Podsiadlo, I.; Paris, C.; Bruzzone, L. A study of the robustness of the long short-term memory classifier to cloudy time series of multispectral images. In Image and Signal Processing for Remote Sensing XXVI; Notarnicola, C., Bovenga, F., Bruzzone, L., Bovolo, F., Benediktsson, J.A., Santi, E., Pierdicca, N., Eds.; SPIE: Bellingham, WA, USA, 2020; p. 59. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Hu, B.; Yang, Y. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Ao, Z.; Xiao, K.; Yan, C.; Xin, Q. Gap-Filling and Missing Information Recovery for Time Series of MODIS Data Using Deep Learning-Based Methods. Remote Sens. 2022, 14, 4692. [Google Scholar] [CrossRef]
- Avolio, C.; Tricomi, A.; Mammone, C.; Zavagli, M.; Costantini, M. A deep learning architecture for heterogeneous and irregularly sampled remote sensing time series. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July 2019–2 August 2019; pp. 9807–9810. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. Isprs J. Photogramm. Remote Sens. 2019, 150, 197–212. [Google Scholar] [CrossRef]
- Stevens, S.; Galanter, E. Ratio scales and category scales for a dozen perceptual continua. J. Exp. Psychol. 1957, 54, 377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Y.; Luo, J. Deep learning for processing and analysis of remote sensing big data: A technical review. Big Earth Data 2022, 6, 527–560. [Google Scholar] [CrossRef]
- Stoian, A.; Poulain, V.; Inglada, J.; Poughon, V.; Derksen, D. Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems. Remote Sens. 2019, 11, 1986. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Machichi, M.A.; Mansouri, L.E.; Imani, Y.; Bourja, O.; Lahlou, O.; Zennayi, Y.; Bourzeix, F.; Houmma, I.H.; Hadria, R. Crop mapping using supervised machine learning and deep learning: A systematic literature review. Int. J. Remote Sens. 2023, 44, 2717–2753. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS Int. J. Geo Inf. 2018, 7, 129. [Google Scholar] [CrossRef]
- Teloglu, H.K.; Aptoula, E. A Morphological-Long Short Term Memory Network Applied to Crop Classification. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3151–3154. [Google Scholar] [CrossRef]
- Reuß, F.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Wagner, W. Comparison of Long Short-Term Memory Networks and Random Forest for Sentinel-1 Time Series Based Large Scale Crop Classification. Remote Sens. 2021, 13, 5000. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Gadiaga, A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 2021, 36, 121–136. [Google Scholar] [CrossRef]
Class | Description | Polygons | Pixels |
---|---|---|---|
Forest | Mediterranean forest | 10 | 1000 |
Scrub | Scrubland | 12 | 1200 |
Dense tree crops | Fruit and citrus trees | 18 | 1800 |
Irrigated grass crops | Mainly horticultural crops | 10 | 1000 |
Impermeable | All artificial surfaces | 18 | 1639 |
Water | Water bodies, including artificial reservoirs | 12 | 1158 |
Bare soil | Uncovered or low-vegetation covered land | 11 | 1055 |
Greenhouses | Irrigated crops surfaces under plastics structures | 26 | 2600 |
Netting | Irrigated tree and vegetables crops covered by nets | 14 | 1400 |
Total | 131 | 12,852 |
Date | Band | NN | Mean | Trend | RF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r2 | RMSE | PSNR | r2 | RMSE | PSNR | r2 | RMSE | PSNR | r2 | RMSE | PSNR | ||
03/12/2018 | 1 | 0.867 | 0.010 | 34.566 | 0.776 | 0.022 | 27.717 | 0.872 | 0.018 | 29.460 | 0.815 | 0.019 | 28.991 |
03/12/2018 | 2 | 0.823 | 0.019 | 33.872 | 0.618 | 0.037 | 28.083 | 0.687 | 0.031 | 29.620 | 0.894 | 0.020 | 33.427 |
03/12/2018 | 3 | 0.818 | 0.024 | 32.396 | 0.611 | 0.049 | 26.196 | 0.696 | 0.039 | 28.179 | 0.904 | 0.023 | 32.765 |
03/12/2018 | 4 | 0.732 | 0.048 | 26.375 | 0.633 | 0.072 | 22.853 | 0.758 | 0.054 | 25.352 | 0.935 | 0.027 | 31.373 |
03/12/2018 | 5 | 0.637 | 0.047 | 26.121 | 0.632 | 0.060 | 24.000 | 0.795 | 0.046 | 26.307 | 0.898 | 0.030 | 30.020 |
03/12/2018 | 6 | 0.845 | 0.029 | 30.632 | 0.775 | 0.040 | 27.839 | 0.778 | 0.044 | 27.011 | 0.907 | 0.030 | 30.338 |
03/12/2018 | 7 | 0.782 | 0.043 | 27.318 | 0.726 | 0.049 | 26.184 | 0.765 | 0.048 | 26.363 | 0.924 | 0.031 | 30.160 |
03/12/2018 | 8 | 0.810 | 0.042 | 27.535 | 0.710 | 0.052 | 25.680 | 0.737 | 0.053 | 25.514 | 0.924 | 0.033 | 29.630 |
03/12/2018 | 8A | 0.771 | 0.046 | 26.492 | 0.758 | 0.047 | 26.306 | 0.789 | 0.048 | 26.123 | 0.924 | 0.032 | 29.645 |
03/12/2018 | 11 | 0.780 | 0.047 | 26.558 | 0.624 | 0.086 | 21.310 | 0.835 | 0.054 | 25.352 | 0.900 | 0.035 | 29.119 |
03/12/2018 | 12 | 0.728 | 0.057 | 24.448 | 0.693 | 0.082 | 21.289 | 0.893 | 0.050 | 25.586 | 0.894 | 0.038 | 27.970 |
04/16/2018 | 1 | 0.877 | 0.011 | 32.729 | 0.460 | 0.024 | 25.953 | 0.707 | 0.022 | 26.709 | 0.927 | 0.012 | 31.974 |
04/16/2018 | 2 | 0.862 | 0.016 | 34.151 | 0.440 | 0.034 | 27.604 | 0.630 | 0.033 | 27.863 | 0.925 | 0.016 | 34.151 |
04/16/2018 | 3 | 0.886 | 0.016 | 34.665 | 0.450 | 0.041 | 26.492 | 0.620 | 0.037 | 27.383 | 0.933 | 0.017 | 34.138 |
04/16/2018 | 4 | 0.876 | 0.024 | 31.725 | 0.329 | 0.065 | 23.071 | 0.569 | 0.053 | 24.844 | 0.925 | 0.026 | 31.030 |
04/16/2018 | 5 | 0.863 | 0.022 | 31.847 | 0.421 | 0.051 | 24.545 | 0.624 | 0.043 | 26.027 | 0.917 | 0.024 | 31.092 |
04/16/2018 | 6 | 0.778 | 0.026 | 30.453 | 0.559 | 0.043 | 26.083 | 0.522 | 0.047 | 25.310 | 0.880 | 0.026 | 30.453 |
04/16/2018 | 7 | 0.773 | 0.030 | 29.309 | 0.402 | 0.058 | 23.583 | 0.430 | 0.057 | 23.734 | 0.855 | 0.032 | 28.749 |
04/16/2018 | 8 | 0.790 | 0.031 | 29.442 | 0.387 | 0.060 | 23.706 | 0.406 | 0.062 | 23.421 | 0.872 | 0.032 | 29.166 |
04/16/2018 | 8A | 0.769 | 0.032 | 28.987 | 0.400 | 0.060 | 23.527 | 0.442 | 0.057 | 23.973 | 0.861 | 0.033 | 28.720 |
04/16/2018 | 11 | 0.846 | 0.030 | 30.458 | 0.411 | 0.067 | 23.479 | 0.586 | 0.055 | 25.193 | 0.898 | 0.033 | 29.630 |
04/16/2018 | 12 | 0.864 | 0.023 | 32.330 | 0.336 | 0.077 | 21.835 | 0.578 | 0.061 | 23.858 | 0.915 | 0.032 | 29.462 |
07/30/2018 | 1 | 0.991 | 0.005 | 37.614 | 0.987 | 0.007 | 34.692 | 0.988 | 0.010 | 31.594 | 0.992 | 0.005 | 37.614 |
07/30/2018 | 2 | 0.986 | 0.007 | 39.036 | 0.942 | 0.012 | 34.354 | 0.944 | 0.013 | 33.659 | 0.953 | 0.011 | 35.110 |
07/30/2018 | 3 | 0.992 | 0.007 | 39.622 | 0.954 | 0.015 | 33.003 | 0.956 | 0.015 | 33.003 | 0.964 | 0.013 | 34.246 |
07/30/2018 | 4 | 0.992 | 0.010 | 37.377 | 0.957 | 0.020 | 31.356 | 0.959 | 0.021 | 30.932 | 0.965 | 0.019 | 31.802 |
07/30/2018 | 5 | 0.991 | 0.010 | 37.114 | 0.973 | 0.015 | 33.593 | 0.974 | 0.017 | 32.505 | 0.979 | 0.014 | 34.192 |
07/30/2018 | 6 | 0.988 | 0.010 | 36.835 | 0.970 | 0.015 | 33.313 | 0.971 | 0.016 | 32.753 | 0.975 | 0.014 | 33.912 |
07/30/2018 | 7 | 0.990 | 0.010 | 37.538 | 0.971 | 0.016 | 33.455 | 0.973 | 0.016 | 33.455 | 0.974 | 0.015 | 34.016 |
07/30/2018 | 8 | 0.986 | 0.011 | 36.184 | 0.950 | 0.020 | 30.991 | 0.953 | 0.021 | 30.567 | 0.958 | 0.019 | 31.437 |
07/30/2018 | 8A | 0.990 | 0.010 | 38.169 | 0.973 | 0.016 | 34.087 | 0.975 | 0.016 | 34.087 | 0.975 | 0.015 | 34.647 |
07/30/2018 | 11 | 0.995 | 0.011 | 38.581 | 0.978 | 0.019 | 33.834 | 0.979 | 0.020 | 33.388 | 0.983 | 0.017 | 34.800 |
07/30/2018 | 12 | 0.995 | 0.010 | 39.676 | 0.981 | 0.019 | 34.100 | 0.982 | 0.019 | 34.100 | 0.985 | 0.017 | 35.067 |
08/29/2018 | 1 | 0.989 | 0.005 | 37.072 | 0.987 | 0.007 | 34.150 | 0.988 | 0.010 | 31.052 | 0.991 | 0.005 | 37.072 |
08/29/2018 | 2 | 0.986 | 0.007 | 40.149 | 0.942 | 0.012 | 35.467 | 0.944 | 0.013 | 34.772 | 0.961 | 0.010 | 37.051 |
08/29/2018 | 3 | 0.990 | 0.007 | 40.105 | 0.954 | 0.015 | 33.485 | 0.956 | 0.015 | 33.485 | 0.969 | 0.012 | 35.423 |
08/29/2018 | 4 | 0.990 | 0.010 | 37.488 | 0.957 | 0.020 | 31.468 | 0.959 | 0.021 | 31.044 | 0.974 | 0.016 | 33.406 |
08/29/2018 | 5 | 0.991 | 0.009 | 38.144 | 0.973 | 0.015 | 33.707 | 0.974 | 0.017 | 32.620 | 0.987 | 0.011 | 36.401 |
08/29/2018 | 6 | 0.991 | 0.009 | 38.166 | 0.970 | 0.015 | 33.729 | 0.971 | 0.016 | 33.168 | 0.985 | 0.011 | 36.423 |
08/29/2018 | 7 | 0.990 | 0.010 | 36.942 | 0.971 | 0.016 | 32.860 | 0.973 | 0.016 | 32.860 | 0.984 | 0.012 | 35.358 |
08/29/2018 | 8 | 0.985 | 0.011 | 37.326 | 0.950 | 0.020 | 32.134 | 0.953 | 0.020 | 32.134 | 0.973 | 0.014 | 35.232 |
08/29/2018 | 8A | 0.989 | 0.011 | 36.542 | 0.973 | 0.016 | 33.288 | 0.975 | 0.016 | 33.288 | 0.983 | 0.012 | 35.786 |
08/29/2018 | 11 | 0.996 | 0.009 | 39.434 | 0.978 | 0.019 | 32.944 | 0.979 | 0.020 | 32.499 | 0.985 | 0.016 | 34.437 |
08/29/2018 | 12 | 0.995 | 0.009 | 38.372 | 0.981 | 0.019 | 31.882 | 0.982 | 0.019 | 31.882 | 0.988 | 0.014 | 34.534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Sarria, F.; Valdivieso-Ros, C.; Gomariz-Castillo, F. Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks. Remote Sens. 2024, 16, 2150. https://doi.org/10.3390/rs16122150
Alonso-Sarria F, Valdivieso-Ros C, Gomariz-Castillo F. Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks. Remote Sensing. 2024; 16(12):2150. https://doi.org/10.3390/rs16122150
Chicago/Turabian StyleAlonso-Sarria, Francisco, Carmen Valdivieso-Ros, and Francisco Gomariz-Castillo. 2024. "Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks" Remote Sensing 16, no. 12: 2150. https://doi.org/10.3390/rs16122150
APA StyleAlonso-Sarria, F., Valdivieso-Ros, C., & Gomariz-Castillo, F. (2024). Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks. Remote Sensing, 16(12), 2150. https://doi.org/10.3390/rs16122150