Multi-Scale Window Spatiotemporal Attention Network for Subsurface Temperature Prediction and Reconstruction
Abstract
:1. Introduction
2. Related Work
3. Method
3.1. Overall Architecture
3.2. MSWO Module
4. Experiments
4.1. Data
4.2. Evaluation Indicator
5. Result and Discussion
5.1. Results of Ablation Experiment
5.2. Model Comparison
5.3. Compare with P2P Schemes
5.4. Section Cutting Comparison
5.5. Planar Error and Density Scatter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S. Climate-Driven Trends in Contemporary Ocean Productivity. Nature 2006, 444, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.C.; Lyman, J.M. Warming Trends Increasingly Dominate Global Ocean. Nat. Clim. Change 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Lowman, H.E.; Emery, K.A.; Dugan, J.E.; Miller, R.J. Nutritional Quality of Giant Kelp Declines Due to Warming Ocean Temperatures. Oikos 2022, 2022. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Zhu, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; et al. Record-Setting Ocean Warmth Continued in 2019. Adv. Atmos. Sci. 2020, 37, 137–142. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Yang, Y.; Yan, H.; Liu, S. Upper Ocean Responses to Binary Typhoons in the Nearshore and Offshore Areas of Northern South China Sea: A Comparison Study. Coas 2020, 99, 115–125. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Beardsley, R.C. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Meng, Y.; Rigall, E.; Chen, X.; Gao, F.; Dong, J.; Chen, S. Physics-Guided Generative Adversarial Networks for Sea Subsurface Temperature Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3357–3370. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Q.; Wang, F.; Lu, Y.; Pratt, L.J. Seasonal Variation of the Deep Limb of the Pacific Meridional Overturning Circulation at Yap-Mariana Junction. JGR Ocean. 2020, 125, e2019JC016017. [Google Scholar] [CrossRef]
- Liu, C.; Feng, L.; Köhl, A.; Liu, Z.; Wang, F. Wave, Vortex and Wave-Vortex Dipole (Instability Wave): Three Flavors of the Intra-Seasonal Variability of the North Equatorial Undercurrent. Geophys. Res. Lett. 2022, 49, e2021GL097239. [Google Scholar] [CrossRef]
- Shu, Y.; Chen, J.; Li, S.; Wang, Q.; Yu, J.; Wang, D. Field-Observation for an Anticyclonic Mesoscale Eddy Consisted of Twelve Gliders and Sixty-Two Expendable Probes in the Northern South China Sea during Summer 2017. Sci. China Earth Sci. 2019, 62, 451–458. [Google Scholar] [CrossRef]
- Tian, T.; Leng, H.; Wang, G.; Li, G.; Song, J.; Zhu, J.; An, Y. Comparison of Machine Learning Approaches for Reconstructing Sea Subsurface Salinity Using Synthetic Data. Remote Sens. 2022, 14, 5650. [Google Scholar] [CrossRef]
- Zhou, G.; Han, G.; Li, W.; Wang, X.; Wu, X.; Cao, L.; Li, C. High-Resolution Gridded Temperature and Salinity Fields from Argo Floats Based on a Spatiotemporal Four-Dimensional Multigrid Analysis Method. JGR Ocean. 2023, 128, e2022JC019386. [Google Scholar] [CrossRef]
- Klemas, V.; Yan, X.-H. Subsurface and Deeper Ocean Remote Sensing from Satellites: An Overview and New Results. Prog. Oceanogr. 2014, 122, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-Learning-Based Information Mining from Ocean Remote-Sensing Imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Yan, X.-H.; Schubel, J.R.; Pritchard, D.W. Oceanic Upper Mixed Layer Depth Determination by the Use of Satellite Data. Remote Sens. Environ. 1990, 32, 55–74. [Google Scholar] [CrossRef]
- Khedouri, E.; Szczechowski, C.; Cheney, R. Potential Oceanographic Applications Of Satellite Altimetry For Inferring Subsurface Thermal Structure. In Proceedings of the Proceedings OCEANS ’83, San Francisco, CA, USA, 29 August–1 September 1983; pp. 274–280. [Google Scholar]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- He, Q.; Zha, C.; Song, W.; Hao, Z.; Du, Y.; Liotta, A.; Perra, C. Improved Particle Swarm Optimization for Sea Surface Temperature Prediction. Energies 2020, 13, 1369. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, N.; Han, Z. A Modified U-Net Model for Predicting the Sea Surface Salinity over the Western Pacific Ocean. Remote Sens. 2023, 15, 1684. [Google Scholar] [CrossRef]
- Xu, S.; Dai, D.; Cui, X.; Yin, X.; Jiang, S.; Pan, H.; Wang, G. A Deep Learning Approach to Predict Sea Surface Temperature Based on Multiple Modes. Ocean Model. 2023, 181, 102158. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Hao, W.; Zhang, L.; Huang, L. Predicting Temporal and Spatial 4-D Ocean Temperature Using Satellite Data Based on a Novel Deep Learning Model. Ocean Model. 2024, 188, 102333. [Google Scholar] [CrossRef]
- Sun, N.; Zhou, Z.; Li, Q.; Zhou, X. Spatiotemporal Prediction of Monthly Sea Subsurface Temperature Fields Using a 3D U-Net-Based Model. Remote Sens. 2022, 14, 4890. [Google Scholar] [CrossRef]
- Yue, W.; Xu, Y.; Xiang, L.; Zhu, S.; Huang, C.; Zhang, Q.; Zhang, L.; Zhang, X. Prediction of 3-D Ocean Temperature Based on Self-Attention and Predictive RNN. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Su, H.; Lu, W.; Wang, A.; Tianyi, Z. AI-Based Subsurface Thermohaline Structure Retrieval from Remote Sensing Observations. In Artificial Intelligence Oceanography; Springer Nature: Singapore, 2023; pp. 105–123. ISBN 978-981-19637-4-2. [Google Scholar]
- Meng, L.; Yan, C.; Zhuang, W.; Zhang, W.; Geng, X.; Yan, X.-H. Reconstructing High-Resolution Ocean Subsurface and Interior Temperature and Salinity Anomalies from Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Xie, H.; Xu, Q.; Cheng, Y.; Yin, X.; Fan, K. Reconstructing Three-Dimensional Salinity Field of the South China Sea from Satellite Observations. Front. Mar. Sci. 2023, 10. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Y.; Niu, Q.; Zhang, Z.; Che, Z.; Jia, S.; Mu, L. Multivariate Temporal Self-Attention Network for Subsurface Thermohaline Structure Reconstruction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Su, H.; Qiu, J.; Tang, Z.; Huang, Z.; Yan, X.-H. Retrieving Global Ocean Subsurface Density by Combining Remote Sensing Observations and Multiscale Mixed Residual Transformer. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1. [Google Scholar] [CrossRef]
- Tan, C.; Gao, Z.; Li, S.; Li, S.Z. SimVP: Towards Simple yet Powerful Spatiotemporal Predictive Learning. arXiv 2023, arXiv:2211.12509. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. arXiv 2021, arXiv:2103.14030. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 879–888. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł. Illia Polosukhin Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar] [CrossRef]
- d’Ascoli, S.; Touvron, H.; Leavitt, M.; Morcos, A.; Biroli, G.; Sagun, L. ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases. J. Stat. Mech. 2022, 2022, 114005. [Google Scholar] [CrossRef]
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 568–578. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021. [Google Scholar]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-Attention ConvLSTM for Spatiotemporal Prediction. Proc. AAAI Conf. Artif. Intell. 2020, 34, 11531–11538. [Google Scholar] [CrossRef]
- Tang, S.; Li, C.; Zhang, P.; Tang, R. SwinLSTM: Improving Spatiotemporal Prediction Accuracy Using Swin Transformer and LSTM. arXiv 2023, arXiv:2308.09891. [Google Scholar]
- Wang, Y.; Wu, H.; Zhang, J.; Gao, Z.; Wang, J.; Yu, P.S.; Long, M. PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2208–2225. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Duan, Y.; Wang, Y.; Pang, J.; Liu, F.; Sheikh, S.R. A Novel Convolutional Informer Network for Deterministic and Probabilistic State-of-Charge Estimation of Lithium-Ion Batteries. J. Energy Storage 2023, 57, 106298. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Gao, Z.; Shi, X.; Wang, H.; Zhu, Y.; Wang, Y.; Li, M.; Yeung, D.-Y. Earthformer: Exploring Space-Time Transformers for Earth System Forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 25390–25403. [Google Scholar]
- Meng, L.; Yan, X.-H. Remote Sensing for Subsurface and Deeper Oceans: An Overview and a Future Outlook. IEEE Geosci. Remote Sens. Mag. 2022, 10, 72–92. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.-H.; Moum, J.N.; Wang, F.; Li, X.; Li, D. Physics-Informed Deep-Learning Parameterization of Ocean Vertical Mixing Improves Climate Simulations. Natl. Sci. Rev. 2022, 9, nwac044. [Google Scholar] [CrossRef] [PubMed]
- Ménesguen, C.; Delpech, A.; Marin, F.; Cravatte, S.; Schopp, R.; Morel, Y. Observations and Mechanisms for the Formation of Deep Equatorial and Tropical Circulation. Earth Space Sci. 2019, 6, 370–386. [Google Scholar] [CrossRef]
Data | Data Source | Spatial Resolution |
---|---|---|
Argo | http://apdrc.soest.hawaii.edu/projects/Argo/ (accessed on 1 May 2024) | 1°, monthly |
ADT | https://www.aviso.altimetry.fr/en/data/products/ (accessed on 1 May 2024) | 0.25°, monthly |
SST | https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-high-resolution-025x025-blended-analysis-daily-sst-and-ice-oisstv2 (accessed on 1 May 2024) | 0.25°, monthly |
SSS | https://www.catds.fr/Products/Catalogue-CPDC/Catds-products-from-Sextant#/metadata/0f02fc28-cb86-4c44-89f3-ee7df6177e7b (accessed on 1 May 2024) | 25 km, monthly |
Model | Global | Shifted | MSE | RMSE | MAE |
---|---|---|---|---|---|
SWO | × | × | 0.842 ± 0.106 | 0.835 ± 0.049 | 0.567 ± 0.026 |
SWO | √ | × | 0.661 ± 0.045 | 0.757 ± 0.027 | 0.528 ± 0.023 |
SWO | × | √ | 0.737 ± 0.051 | 0.798 ± 0.033 | 0.547 ± 0.031 |
SWO | √ | √ | 0.788 ± 0.104 | 0.820 ± 0.051 | 0.557 ± 0.027 |
MSWO | × | × | 0.737 ± 0.074 | 0.803 ± 0.047 | 0.558 ± 0.035 |
MSWO | √ | × | 0.648 ± 0.047 | 0.749 ± 0.026 | 0.516 ± 0.012 |
MSWO | × | √ | 0.804 ± 0.104 | 0.838 ± 0.058 | 0.595 ± 0.032 |
MSWO | √ | √ | 0.676 ± 0.075 | 0.766 ± 0.044 | 0.523 ± 0.023 |
Method | Size (H = W) | MSE | RMSE | MAE | Cite |
---|---|---|---|---|---|
ConvLSTM | 16 | 0.829 ± 0.105 | 0.858 ± 0.060 | 0.580 ± 0.048 | [33] |
PredRNN | 16 | 1.007 ± 0.143 | 0.925 ± 0.062 | 0.634 ± 0.043 | [34] |
SwinLSTM | 16 | 1.074 ± 0.156 | 0.963 ± 0.064 | 0.648 ± 0.031 | [42] |
EarthFormer | 16/8 | 0.789 ± 0.091 | 0.834 ± 0.054 | 0.596 ± 0.046 | [46] |
SA-ConvLSTM | 16 | 0.935 ± 0.105 | 0.891 ± 0.054 | 0.610 ± 0.034 | [41] |
SimVP | 16 | 0.768 ± 0.067 | 0.813 ± 0.035 | 0.575 ± 0.023 | [30] |
SWO (ours) | 16 | 0.661 ± 0.045 | 0.757 ± 0.027 | 0.528 ± 0.023 | - |
MSWO (ours) | 16/8 | 0.648 ± 0.047 | 0.749 ± 0.026 | 0.516 ± 0.012 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Wang, J.; Liu, Y.; Huang, C.; Jiang, Q.; Feng, L.; Wan, L.; Zhang, X. Multi-Scale Window Spatiotemporal Attention Network for Subsurface Temperature Prediction and Reconstruction. Remote Sens. 2024, 16, 2243. https://doi.org/10.3390/rs16122243
Jiang J, Wang J, Liu Y, Huang C, Jiang Q, Feng L, Wan L, Zhang X. Multi-Scale Window Spatiotemporal Attention Network for Subsurface Temperature Prediction and Reconstruction. Remote Sensing. 2024; 16(12):2243. https://doi.org/10.3390/rs16122243
Chicago/Turabian StyleJiang, Jiawei, Jun Wang, Yiping Liu, Chao Huang, Qiufu Jiang, Liqiang Feng, Liying Wan, and Xiangguang Zhang. 2024. "Multi-Scale Window Spatiotemporal Attention Network for Subsurface Temperature Prediction and Reconstruction" Remote Sensing 16, no. 12: 2243. https://doi.org/10.3390/rs16122243
APA StyleJiang, J., Wang, J., Liu, Y., Huang, C., Jiang, Q., Feng, L., Wan, L., & Zhang, X. (2024). Multi-Scale Window Spatiotemporal Attention Network for Subsurface Temperature Prediction and Reconstruction. Remote Sensing, 16(12), 2243. https://doi.org/10.3390/rs16122243