Generative Adversarial Networks for SAR Automatic Target Recognition and Classification Models Enhanced Explainability: Perspectives and Challenges
Abstract
Share and Cite
Remusati, H.; Le Caillec, J.-M.; Schneider, J.-Y.; Petit-Frère, J.; Merlet, T. Generative Adversarial Networks for SAR Automatic Target Recognition and Classification Models Enhanced Explainability: Perspectives and Challenges. Remote Sens. 2024, 16, 2569. https://doi.org/10.3390/rs16142569
Remusati H, Le Caillec J-M, Schneider J-Y, Petit-Frère J, Merlet T. Generative Adversarial Networks for SAR Automatic Target Recognition and Classification Models Enhanced Explainability: Perspectives and Challenges. Remote Sensing. 2024; 16(14):2569. https://doi.org/10.3390/rs16142569
Chicago/Turabian StyleRemusati, Héloïse, Jean-Marc Le Caillec, Jean-Yves Schneider, Jacques Petit-Frère, and Thomas Merlet. 2024. "Generative Adversarial Networks for SAR Automatic Target Recognition and Classification Models Enhanced Explainability: Perspectives and Challenges" Remote Sensing 16, no. 14: 2569. https://doi.org/10.3390/rs16142569
APA StyleRemusati, H., Le Caillec, J.-M., Schneider, J.-Y., Petit-Frère, J., & Merlet, T. (2024). Generative Adversarial Networks for SAR Automatic Target Recognition and Classification Models Enhanced Explainability: Perspectives and Challenges. Remote Sensing, 16(14), 2569. https://doi.org/10.3390/rs16142569