Millimeter-Wave Radar Detection and Localization of a Human in Indoor Complex Environments
Abstract
:1. Introduction
2. The Radar Signal Model
3. The Signal Processing Overall Design
4. Potential Challenges and Solutions
4.1. Low Signal-to-Noise Ratio (SNR) for Static Human Targets
4.2. Target Parameter Estimation
5. Data Preprocessing and Detection of Possible Targets
5.1. Preprocessing
5.2. Target Parameter Estimation
5.2.1. 2D-FFT
5.2.2. CFAR Detection
5.2.3. Peak Search
5.2.4. Azimuth Angle Calculation
5.3. Clutter Suppression
5.3.1. Calculation of Coordinates
5.3.2. The DBSCAN Algorithm
5.3.3. Binary Integration
6. Multipath Ghost Target Analysis and Removal
6.1. Multipath Propagation Analysis
6.1.1. A Human beside a Potted Plant
6.1.2. A Human beside a Plotted Plant
6.2. Multipath Suppression
- Difference Calculation between estimation and theory
- 2.
- Difference Comparison
- 3.
- Ghost Target Removal
7. Experiment and Result Analysis
7.1. Experiments
7.2. Results
7.2.1. Human Target Localization
7.2.2. Target Detection in Different Environments
7.2.3. Method Comparison
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, R.; Feng, W.; Wang, F.; Qian, Z.; Yan, H.; Wang, S. Benchmarking the Complementary-View Multi-Human Association and Tracking. Int. J. Comput. Vis. 2024, 132, 118–136. [Google Scholar] [CrossRef]
- Jiang, Y.; Gong, T.; He, L.; Yan, S.; Wu, X.; Liu, J. Fall Detection on Embedded Platform Using Infrared Array Sensor for Healthcare Applications. Neural Comput. Appl. 2024, 36, 5093–5108. [Google Scholar] [CrossRef]
- Wu, L.; Huang, C.; Fei, L.; Zhao, S.; Zhao, J.; Cui, Z.; Xu, Y. Video-Based Fall Detection Using Human Pose and Constrained Generative Adversarial Network. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 2179–2194. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Wang, Y.-L.; Hu, Y.; Liu, J.; He, X.-D.; Yuan, J.; Wu, Q. Machine-Learning-Based Human Motion Recognition via Wearable Plastic-Fiber Sensing System. IEEE Internet Things J. 2023, 10, 17893–17904. [Google Scholar] [CrossRef]
- Lattanzi, E.; Calisti, L.; Capellacci, P. Lightweight Accurate Trigger to Reduce Power Consumption in Sensor-Based Continuous Human Activity Recognition. Pervasive Mob. Comput. 2023, 96, 101848. [Google Scholar] [CrossRef]
- Pyun, K.R.; Kwon, K.; Yoo, M.J.; Kim, K.K.; Gong, D.; Yeo, W.-H.; Han, S.; Ko, S.H. Machine-Learned Wearable Sensors for Real-Time Hand-Motion Recognition: Toward Practical Applications. Natl. Sci. Rev. 2024, 11, nwad298. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, X.; Jing, X. A Mutiscale Residual Attention Network for Multitask Learning of Human Activity Using Radar Micro-Doppler Signatures. Remote Sens. 2019, 11, 2584. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, W.; Ren, Z.; Tang, C.; Ou, Y.; Cui, G.; Guo, S. Analysis of Electromagnetic Wave and Multipath Suppression from Overhead Perspective. Remote Sens. 2023, 15, 4903. [Google Scholar] [CrossRef]
- Gianoglio, C.; Mohanna, A.; Rizik, A.; Moroney, L.; Valle, M. On Edge Human Action Recognition Using Radar-Based Sensing and Deep Learning. IEEE Trans. Ind. Inform. 2024, 20, 4160–4172. [Google Scholar] [CrossRef]
- Liang, Z.; Jin, Y.; Yang, D.; Liang, B.; Mo, J. Two-Step Accuracy Improvement for Multitarget Detection in Complex Environment Using UWB Radar. Remote Sens. 2024, 16, 877. [Google Scholar] [CrossRef]
- Raeis, H.; Kazemi, M.; Shirmohammadi, S. CAE-MAS: Convolutional Autoencoder Interference Cancellation for Multiperson Activity Sensing With FMCW Microwave Radar. IEEE Trans. Instrum. Meas. 2024, 73, 8001710. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, T.; Dai, Y.; Song, Y.; Li, K. Three-Dimensional Human Pose Estimation from Micro-Doppler Signature Based on SISO UWB Radar. Remote Sens. 2024, 16, 1295. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Y.; Fu, Y.; Yang, F. Multipath Model and Ghost Suppression for Millimeter Wave Road Monitoring Radar. J. Anhui Univ. Technol. 2023, 40, 324–332. [Google Scholar] [CrossRef]
- Jeong, T.; Lee, S. Ghost Target Suppression Using Deep Neural Network in Radar-Based Indoor Environment Mapping. IEEE Sens. J. 2022, 22, 14378–14386. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Zhou, H. Entropy-Based Multipath Detection Model for MIMO Radar. J. Syst. Eng. Electron. 2017, 28, 51–57. [Google Scholar] [CrossRef]
- Sasakawa, D.; Honma, N.; Nakayama, T.; Iizuka, S. Fast Living-Body Localization Algorithm for MIMO Radar in Multipath Environment. IEEE Trans. Antennas Propag. 2018, 66, 7273–7281. [Google Scholar] [CrossRef]
- Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A Novel NLOS Mitigation Algorithm for UWB Localization in Harsh Indoor Environments. IEEE Trans. Veh. Technol. 2019, 68, 686–699. [Google Scholar] [CrossRef]
- Feng, R.; Greef, E.D.; Rykunov, M.; Sahli, H.; Pollin, S.; Bourdoux, A. Multipath Ghost Recognition for Indoor MIMO Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5104610. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wang, Y.; Lin, Y.; Shen, W.; Jiang, W.; Sun, J. HCM-LMB Filter: Pedestrian Number Estimation with Millimeter-Wave Radar in Closed Spaces. Remote Sens. 2023, 15, 4698. [Google Scholar] [CrossRef]
- Hao, Z.; Yan, H.; Dang, X.; Ma, Z.; Jin, P.; Ke, W. Millimeter-Wave Radar Localization Using Indoor Multipath Effect. Sensors 2022, 22, 5671. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Wu, P.L.; Chen, J.H.; Guo, S.S.; Cui, G.L. Vehicle-Mounted Millimetre-Wave Radar Multipath False-Target Analysis and Cancellation Method. Syst. Eng. Electron. 2024, 46, 88–96. [Google Scholar]
- Lei, P.Z.; Fan, C.Y.; Huang, X.T.; Zhu, J.H. Weak Moving Target Detection with Multipath Clutter Suppression Based on Hough Transform. In Proceedings of the 2013 14th International Radar Symposium (IRS), Dresden, Germany, 19–21 June 2013; Volume 2, pp. 774–778. [Google Scholar]
- Liang, J.; Liang, Q.L. Outdoor Propagation Channel Modeling in Foliage Environment. IEEE Trans. Veh. Technol. 2010, 59, 2243–2252. [Google Scholar] [CrossRef]
- In, C.; Lim, D.-W.; Kang, J.-M.; Lee, J.-H.; Kim, H.-M.; Kim, S.; Kim, C. Human Detection Based on the Condition Number in the Non-Stationary Clutter Environment Using UWB Impulse Radar. In Proceedings of the 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Republic of Korea, 5–8 November 2013; IEEE: Seoul, Republic of Korea, 2013; pp. 1006–1008. [Google Scholar]
- Zhong, Y.; Yang, Y.; Zhu, X.; Dutkiewicz, E.; Zhou, Z.; Jiang, T. Device-Free Sensing for Personnel Detection in a Foliage Environment. IEEE Geosci. Remote Sens. Lett. 2017, 14, 921–925. [Google Scholar] [CrossRef]
- Lei, P.; Huang, X.; Fan, C.; Ji, K.; Qin, X. Moving Human Target Detection in Foliage Environments Based on Hough Transform. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: Melbourne, Australia, 2013; pp. 2637–2640. [Google Scholar]
- Zhang, J.; Jin, T.; He, Y.; Qiu, L.; Zhou, Z.M. Foliage-Penetration Human Tracking by Multistatic Radar. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Beijing, China, 2016; pp. 6102–6105. [Google Scholar]
- Will, C.; Vaishnav, P.; Chakraborty, A.; Santra, A. Human Target Detection, Tracking, and Classification Using 24-GHz FMCW Radar. IEEE Sens. J. 2019, 19, 7283–7299. [Google Scholar] [CrossRef]
- Guleryuz, O.G. Weighted Averaging for Denoising With Overcomplete Dictionaries. IEEE Trans. Image Process. 2007, 16, 3020–3034. [Google Scholar] [CrossRef] [PubMed]
- Danielson, G.C.; Lanczos, C. Some Improvements in Practical Fourier Analysis and Their Application to X-Ray Scattering from Liquids. J. Frankl. Inst. 1942, 233, 365–380. [Google Scholar] [CrossRef]
- Nitzberg, R. Constant-False-Alarm-Rate Signal Processors for Several Types of Interference. IEEE Trans. Aerosp. Electron. Syst. 1972, AES-8, 27–34. [Google Scholar] [CrossRef]
- Ventzas, D.; Petrellis, N. Peak Searching Algorithms and Applications. In Proceedings of the IASTED International Conference on Signal and Image Processing and Applications, Crete, Greece, 22–24 June 2011. [Google Scholar]
- Sun, H.; Brigui, F.; Lesturgie, M. Analysis and Comparison of MIMO Radar Waveforms. In Proceedings of the International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar]
- Zhang, W.; Liu, T.; Yang, G.; Jiang, C.; Hu, Y.; Lan, T.; Zhao, Z. A Novel Method for Improving Quality of Oblique Incidence Sounding Ionograms Based on Eigenspace-Based Beamforming Technology and Capon High-Resolution Range Profile. Remote Sens. 2022, 14, 4305. [Google Scholar] [CrossRef]
- Ester, M.; Sander, J.; Kriegel, H.P.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Mark, A. Richards Binary Integration. In Fundamentals of Radar Signal Processing; McGraw Hill: New York, NY, USA, 2014; pp. 491–495. [Google Scholar]
- Jebari, S.; Smiti, A.; Louati, A. AF-DBSCAN: An Unsupervised Automatic Fuzzy Clustering Method Based on DBSCAN Approach. In Proceedings of the 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Budapest, Hungary, 3–5 July 2019; pp. 1–6. [Google Scholar]
Type of Paths | Propagation Paths | Targets |
---|---|---|
+ | (real) | |
+ | (ghost) | |
+ | (ghost) | |
+ | (ghost) |
Methods | Static Noise | Time-Varying Clutter | Multipath |
---|---|---|---|
The human detection method in [27] | Removed | Partly removed | Not removed |
The static human detection in [28] | Removed | Partly removed | Not removed |
Human localization in urban roads [21] | Removed | Not removed | Removed |
The proposed method | Removed | Removed | Removed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Chen, P.; Wang, J.; Bai, Y.; Song, J.; Tian, L. Millimeter-Wave Radar Detection and Localization of a Human in Indoor Complex Environments. Remote Sens. 2024, 16, 2572. https://doi.org/10.3390/rs16142572
Xing Z, Chen P, Wang J, Bai Y, Song J, Tian L. Millimeter-Wave Radar Detection and Localization of a Human in Indoor Complex Environments. Remote Sensing. 2024; 16(14):2572. https://doi.org/10.3390/rs16142572
Chicago/Turabian StyleXing, Zhixuan, Penghui Chen, Jun Wang, Yujing Bai, Jinhao Song, and Liuyang Tian. 2024. "Millimeter-Wave Radar Detection and Localization of a Human in Indoor Complex Environments" Remote Sensing 16, no. 14: 2572. https://doi.org/10.3390/rs16142572
APA StyleXing, Z., Chen, P., Wang, J., Bai, Y., Song, J., & Tian, L. (2024). Millimeter-Wave Radar Detection and Localization of a Human in Indoor Complex Environments. Remote Sensing, 16(14), 2572. https://doi.org/10.3390/rs16142572