Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale
Abstract
:1. Introduction
1.1. Soil Information Needs
1.2. Digital Soil Mapping
1.3. Terrain Covariates for DSM
1.4. Multispectral Covariates for DSM
1.5. Study Outline and Objectives
2. Materials and Methods
2.1. Study Area
2.2. Soil Model Design
2.3. Soil Sample Data
2.4. Terrain Covariates
2.5. Climate Covariates
2.6. Spectral Covariates
2.6.1. Multispectral Raster Time Series
2.6.2. Land Use Covariates
2.6.3. Spectral Bare Soil Covariates
3. Results
3.1. Soil Sample Data
3.2. Clay Model
3.3. SOC Model
3.4. pH Model
3.5. CECpot Model
4. Discussion
4.1. Evaluation Strategy
4.2. Model Performance and Soil Sample Data
4.3. Model Performance in Comparison
4.4. Influential Covariates for the Soil Property Distributions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept of future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Amelung, W.; Bossio, D.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; Minasny, B.; et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Mulder, V.L.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Evans, D.L.; Janes-Bassett, V.; Borrelli, P.; Chenu, C.; Ferreira, C.S.S.; Griffiths, R.I.; Kalantari, Z.; Keestra, S.; Lala, R.; Panagos, P.; et al. Sustainable futures over the next decade are rooted in soil science. Eur. J. Soil Sci. 2021, 73, e13145. [Google Scholar] [CrossRef]
- Arrouays, D.; McBratney, A.; Bouma, J.; Libhova, Z.; Richer-de-Forges, A.C.; Morgan, C.L.S.; Roudier, P.; Poggio, L.; Mulder, V.L. Impression of digital soil maps: The good, the not so good, and the making them ever better. Geoderma Reg. 2020, 20, e00255. [Google Scholar] [CrossRef]
- Lagacherie, P.; McBratney, A.B. Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. Dev. Soil Sci. 2006, 31, 3–22. [Google Scholar]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Vaysse, K.; Lagacherie, P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma 2017, 291, 55–64. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology; McGraw Hill Book Company: New York, NY, USA, 1941; p. 281. [Google Scholar]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Blackford, C.; Heung, B.; Webster, K.L. Incorporating spatial uncertainty maps into soil sampling improves digital soil mapping classification accuracy in Ontario, Canada. Geoderma Reg. 2022, 29, e00495. [Google Scholar] [CrossRef]
- Stoorvogel, J.J.; Bakkenes, M.; Temme, A.J.A.M.; Batjes, N.H.; ten Brink, B.J.E. S-World: A global soil map for environmental modelling. Land Degrad. Dev. 2016, 28, 22–33. [Google Scholar] [CrossRef]
- Stumpf, F.; Schmidt, K.; Goebes, P.; Behrens, T.; Schönbrodt-Stitt, S.; Wadoux, A.; Xiang, W.; Scholten, T. Uncertainty-guided sampling to improve digital soil maps. Catena 2017, 153, 30–38. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Lee, J.; Behrens, T.; Luo, Z.; Baldock, J.; Richards, A. Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls. Nat. Geosci. 2019, 12, 547–552. [Google Scholar] [CrossRef]
- Vaysse, K.; Lagacherie, P. Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillion (France). Geoderma Reg. 2015, 4, 20–30. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Lu, Q.; Tian, S.; Wei, L. Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Sci. Total Environ. 2023, 856, 159171. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. Soil 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth Sci. Rev. 2020, 2010, 103359. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Meinshausen, N. Quantile Regression Forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Kasraei, B.; Heung, B.; Saurette, D.D.; Schmidt, M.G.; Bulmer, C.E.; Bethel, W. Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning. Environ. Model. Softw. 2021, 144, 105139. [Google Scholar] [CrossRef]
- Chagas, C.S.; Carvalho Junior, W.; Bhering, S.B.; Filho, B.C. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Mahdianpari, M.; Mohammadimanesh, F.; Behrens, T.; Toomanian, N.; Scholten, T.; Schmidt, K. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma 2020, 376, 114552. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Belgiu, M.; Drâgut, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Keskin, H.; Grunwald, S.; Harris, W.G. Digital mapping o sol carbon fractions with machine learning. Geoderma 2019, 339, 40–58. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Brus, D.J.; Heuvelink, G.B.M. Sampling design optimization for soil mapping with random forest. Geoderma 2019, 355, 113913. [Google Scholar]
- Roudier, P.; Burge, O.R.; Richardson, S.J.; McCarthy, J.K.; Grealish, G.J.; Ausseli, A.G. National scale 3D mapping of soil pH using a data augmentation approach. Remote Sens. 2020, 12, 2872. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Sothe, C.; Gonsamo, A.; Arabian, J.; Snider, J. Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations. Geoderma 2022, 405, 115402. [Google Scholar] [CrossRef]
- Baltensweiler, A.; Walthert, L.; Hanewinkel, M.; Zimmermann, S.; Nussbaum, M. Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland. Geoderma Reg. 2021, 27, e00437. [Google Scholar] [CrossRef]
- Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine learning techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: An approach to reduce soil moisture and crop residue effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef]
- Liang, Z.; Chen, S.; Yang, Y.; Zhao, R.; Shi, Z.; Viscarra Rossel, R.A. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980′s China. Geoderma 2019, 335, 47–56. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Chabrillat, S.; Ben-Dor, E.; Demattê, J.A.M. Multispectral models from bare soil composites for mapping topsoil properties over Europe. Remote Sens. 2020, 12, 1369. [Google Scholar] [CrossRef]
- Song, X.D.; Wu, H.Y.; Liu, F.; Yang, F.; Li, D.C.; Zhao, Y.G.; Yang, J.L.; Zhang, G.L. pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 2020, 363, 114145. [Google Scholar]
- Žížala, D.; Minařík, R.; Skála, J.; Beitlerová, H.; Juřicová, J.; Reyes Rojas, J.; Penížek, V.; Zádorová, T. High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. Catena 2022, 212, 106024. [Google Scholar]
- Zhang, Y.; Saurette, D.D.; Easher, T.H.; Ji, W.; Adamchuk, V.I.; Biswas, A. Comparison of sampling designs for calibrating digital soil maps at multiple depths. Pedoshere 2022, 32, 588–601. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzales, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, Q.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar]
- Orton, T.G.; Pringle, M.J.; Bishop, T.F.A. A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma 2016, 262, 174–186. [Google Scholar] [CrossRef]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil property and class maps of the conterminous Unites States at 100-meter spatial resolution. Soil Sci. Soc. Am. J. 2018, 82, 196–201. [Google Scholar]
- Rentschler, T.; Gries, P.; Behrens, T.; Bruelheide, H.; Kühn, P.; Seitz, S.; Shi, X.; Trogisch, S.; Scholten, T.; Schmidt, K. Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi province, PR China. PLoS ONE 2019, 14, e0220881. [Google Scholar]
- Yamashita, N.; Ishizuka, S.; Hashimoto, S.; Ugawa, S.; Nanko, K.; Osone, Y.; Iwahashi, J.; Sakai, Y.; Inatomi, M.; Kawanishi, A.; et al. National-scale 3D mapping of soil organic carbon in Japanese forest considering microtopography and tephra deposition. Geoderma 2022, 406, 115534. [Google Scholar] [CrossRef]
- Nauman, T.W.; Duniway, M.C. Relative prediction intervals reveal larger uncertainty in 3D approaches to predictive digital soil mapping of soil properties with legacy data. Geoderma 2019, 347, 170–184. [Google Scholar]
- Ma, Y.; Minasny, B.; McBratney, A.; Poggio, L.; Fajardo, M. Predicting soil properties in 3D: Should depth be a covariate? Geoderma 2021, 383, 114794. [Google Scholar] [CrossRef]
- Schillaci, C.; Acutis, M.; Lombardo, L.; Lipani, A.; Fantappiè, M.; Märker, M.; Saia, S. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci. Total Environ. 2017, 601–602, 821–832. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsarkiridis, N.; Chabrillat, S.; Demattê, J.A.M.; Ben-Dor, E.; Gholizadeh, A.; Zalidis, G.; van Wesemael, B. Earth observation data-driven cropland soil monitoring: A review. Remote Sens. 2021, 13, 4439. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Heute, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Maynard, J.J.; Levi, M.R. Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability. Geoderma 2017, 285, 94–109. [Google Scholar] [CrossRef]
- Rahmani, S.; Ackerson, J.P.; Schulze, D.; Adhikari, K.; Libohova, Z. Digital mapping of soil organic matter and cation exchange capacity in a low relief landscape using LiDAR data. Agronomy 2022, 12, 1338. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; de Sousa Mendes, W.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- Biswas, A.; Cresswell, H.P.; Viscarra Rossel, R.A.; Si, B.C. Characterizing scale- and location-specific variation in non-linear soil systems using the wavelet transform. Eur. J. Soil Sci. 2013, 64, 706–715. [Google Scholar] [CrossRef]
- Maynard, J.J.; Johnson, M.G. Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent. Geoderma 2014, 230–231, 29–40. [Google Scholar] [CrossRef]
- Miller, B.A.; Koszinski, S.; Wehrhan, M.; Sommer, M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma 2015, 239–240, 97–106. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; MacMillan, R.A.; Viscarra Rossel, R.A. Multi-scale contextual spatial modelling with the Gaussian scale space. Geoderma 2018, 310, 128–137. [Google Scholar] [CrossRef]
- Behrens, T.; Zhu, A.; Schmidt, K.; Scholten, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 2010, 155, 175–185. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Ramirez-Lopez, L.; Gallant, J.; Zhu, A.X.; Scholten, T. Hyper-scale digital soil mapping and soil formation analysis. Geoderma 2014, 213, 578–588. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Zhao, Y.; Zhang, C.; Zhang, G. Digital soil mapping based on wavelet decomposed components of environmental covariates. Geoderma 2017, 303, 118–132. [Google Scholar] [CrossRef]
- Gupta, S.; Hasler, J.K.; Alewell, C. Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus. Geoderma Reg. 2024, 36, e00747. [Google Scholar] [CrossRef]
- Kumar, A.; Moharana, P.C.; Jena, R.K.; Malyan, S.K.; Sharma, G.K.; Fagodiya, R.K.; Shabnam, A.A.; Jigyasu, D.K.; Kumari, K.M.V.; Doss, S.G. Digital mapping of soil organic carbon using machine learning algorithms in the upper Brahmaputra valley of northeastern India. Land 2023, 12, 1841. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentionel-1 and Sentinel-2 data based on machine learning. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Silvero, N.E.Q.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Demattê, J.A.M.; Chabriallat, S.; Poppiel, R.R.; Rizzo, R.; Dotto, A.C.; Silvero, N.E.Q.; Mendes, W.S.; Bonfatti, B.R.; Ruiz, L.F.C.; et al. Leveraging the application of earth observation data for mapping cropland soils in Brazil. Geoderma 2021, 396, 115042. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; de Sousa Mendes, W.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; Mello, F.A.D.O.; et al. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Demattê, J.A.M.; Marques, K.P.P.; Poppiel, R.R.; Rizzo, R.; Mendes, W.S.; Silvero, N.E.Q.; Safanelli, J.L. Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology 2020, 367, 107305. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Shirtliffe, S.J.; Bedard-Haughn, A.K. Predictive soil mapping using historic bare soil composite imagery and legacy soil survey data. Geoderma 2021, 401, 115316. [Google Scholar] [CrossRef]
- Roberts, D.; Wilford, J.; Ghattas, O. Exposed soil and mineral map of the Australian continent revealing the land at its barest. Nat. Commun. 2019, 10, 5297. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Salazar, D.; Vaudour, E.; Riche-de-Forges, A.C.; Chen, S.; Martelet, G.; Baghdadi, N.; Arrouays, D. Sentinel-2 and Sentinel-1 bare soil temporal mosaics of 6-year periods for soil organic carbon content mapping in Central France. Remote Sens. 2023, 15, 2410. [Google Scholar] [CrossRef]
- Delogu, E.; Olioso, A.; Alliès, A.; Demarty, J.; Boulet, G. Evaluation of multiple methods for the production of continuous evapotranspiration estimates from TIR remote sensing. Remote Sens. 2021, 13, 1086. [Google Scholar] [CrossRef]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zeng, C.; Zhang, H.; Wang, S. Exploring influence factors in mapping soil organic carbon on low-relief agricultural lands using time series of remote sensing data. Soil Till. Res. 2021, 210, 104982. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wu, J.; Luo, W.; Tian, L.; Wang, Y.; Liu, Y.; Zhang, L.; Zhao, C.; Zhang, W. Soil moisture monitoring and evaluation in agricultural fields based on NDVI long time series and CEEMDAN. Remote Sens. 2023, 15, 5008. [Google Scholar] [CrossRef]
- Stumpf, F.; Keller, A.; Schmidt, K.; Mayr, A.; Gubler, A.; Schaepman, M. Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems. Agric. Ecosyst. Environ. 2018, 258, 129–142. [Google Scholar] [CrossRef]
- Hounkpatin, K.O.L.; Bossa, A.Y.; Yira, Y.; Igue, M.A.; Sinsin, B.A. Assessment of the soil fertility status in Benin (West Africa)—Digital soil mapping using machine learning. Geoderma Reg. 2022, 28, e00444. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Sánchez del Árbol, M.Á.; Kaya, F.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Digital mapping of soil texture classes for efficient land management in the Piedmont plain of Iran. Soil Use Manag. 2022, 38, 1705–1735. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Angelini, M.E.; Poggio, L.; Bai, Z.; Batjes, N.H.; Van den Bosch, R.; Bossio, D.; Estella, S.; Lehmann, J.; Olmedo, G.F.; et al. Machine learning in space and time for modelling soil organic carbon change. Eur. J. Soil Sci. 2020, 72, 1607–1623. [Google Scholar] [CrossRef]
- Venter, Z.S.; Hawkins, H.J.; Cramer, M.D.; Mills, A.J. Mapping soil organic carbon stocks and trends with satellite-driven high resolution maps over South Africa. Sci. Total Environ. 2021, 771, 145384. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, X.; Qin, Y.; Doughty, R.B.; Dong, J.; Zhou, Z. Characterizing the encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to 2010 using PALSAR and Landsat data. Remote Sens. Environ. 2018, 205, 166–179. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Xu, M.; Shao, S.; Wang, X.; Liu, W.; Wu, D.; Ma, Y.; Bao, Y.; Zhang, X.; et al. Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China. Catena 2020, 184, 104259. [Google Scholar] [CrossRef]
- Federal Statistical Office, Switzerland—Land Use, Land Cover and Suitability. Available online: https://www.bfs.admin.ch/bfs/en/home.html (accessed on 2 April 2023).
- Federal Office for Meteorology and Climatology, Switzerland—Spatial Climate Analysis. Available online: https://www.meteoswiss.admin.ch/ (accessed on 10 April 2023).
- Federal Office of Topography, Switzerland—swissALTI3D. Available online: https://www.swisstopo.admin.ch/en/home.html (accessed on 5 April 2023).
- Bolliger, J.; Hagedorn, F.; Leifeld, J.; Böhl, J.; Zimmermann, S.; Soliva, R.; Kienast, F. Effects of land use change on carbon stocks in Switzerland. Ecosystems 2008, 11, 895–907. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Bishop, T.F.A.; McBratney, A.B.; Laslett, G.M. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B.; Laslett, G.M. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 2009, 154, 138–152. [Google Scholar] [CrossRef]
- Lai, Y.R.; Orton, T.G.; Pringle, M.J.; Menzies, N.W.; Dang, Y.P. Increment-averaged kriging: A comparison with depth-harmonized mapping of soil exchangeable sodium percentage in a cropping region of eastern Australia. Geoderma 2020, 363, 114151. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Grouped variable importance with random forests and application to multiple functional data analysis. Comput. Stat. Data Anal. 2015, 90, 15–35. [Google Scholar] [CrossRef]
- Swiss Soil Information System: Soil Database for Switzerland—Version 6. Available online: https://nabodat.ch/index.php/de/ (accessed on 10 April 2023).
- Biodiversity Monitoring Switzerland. Available online: https://www.biodiversitymonitoring.ch/index.php/en/ (accessed on 10 April 2023).
- Meuli, R.G.; Wächter, D.; Schwab, P.; Kohli, L.; Zimmermann, R. Connecting biodiversity monitoring with soil inventory data—A Swiss case study. Bull. BGS 2017, 38, 65–69. [Google Scholar]
- Descombes, P.; Wakthert, L.; Baltensweiler, A.; Meuli, R.G.; Karger, D.N.; Ginzler, C.; Zurell, D.; Zimmermann, N.E. Spatial modelling of ecological indicator values improves predictions of plant distributions in complex landscapes. Ecography 2020, 43, 1448–1463. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.; Klute, A. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Soil Science Society of America Book Series; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; pp. 404–410. [Google Scholar]
- Walkley, A.; Black, L.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Weston, N.B.; Vile, M.A.; Neubauer, S.C.; Velinsky, D.J. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 2011, 102, 135–151. [Google Scholar] [CrossRef]
- Gubler, A.; Wächter, D.; Schwab, P. Homogenization of series of soil organic carbon: Harmonizing results by wet oxidation (Swiss Standard Method) and dry combustion. Agroscope Sci. 2018, 62, 1–9. [Google Scholar]
- Heikkinen, J.; Ketoja, E.; Nuutinen, V.; Regina, K. Declining trend of carbon in Finnish cropland soils in 1974–2009. Glob. Chang. Biol. 2013, 19, 1456–1469. [Google Scholar] [CrossRef] [PubMed]
- Agroscope, Swiss Lab Reference Methods. Available online: https://www.agroscope.admin.ch/agroscope/en/home/topics/environment-resources/monitoring-analytics/referenzmethoden.html (accessed on 10 April 2024).
- Solly, E.F.; Weber, V.; Zimmermann, S.; Walthert, L.; Hagedorn, F.; Schmidt, M.W.I. A Critical Evaluation of the Relationship between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils. Front. For. Glob. Chang. 2020, 3, 98. [Google Scholar] [CrossRef]
- Walthert, L.; Graf Pannatier, E.; Meier, E.S. Shortage of nutrients and excess of toxic elements in soils limit the distribution of soil-sensitive tree species in temperate forests. For. Ecol. Manag. 2013, 297, 94–107. [Google Scholar] [CrossRef]
- Walthert, L.; Meier, E.S. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 2017, 7, 9473–9484. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; MacMillan, R.A.; Viscarra Rossel, R.A. Multi-scale digital soil mapping with deep learning. Sci. Rep. 2018, 8, 15244. [Google Scholar] [CrossRef]
- Behrens, T.; Viscarra Rossel, R.A. On the interpretability of predictors in spatial data science: The information horizon. Sci. Rep. 2020, 10, 16737. [Google Scholar] [CrossRef] [PubMed]
- Farr, T.G.; Rosen, P.G.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef]
- Amirian-Chakan, A.; Minasny, B.; Taghizadeh-Mehrjardi, R.; Akbarifazli, R.; Darvishpasand, Z.; Khordehbin, S. Some practical aspects of predicting texture data in digital soil mapping. Soil Till. Res. 2019, 194, 104289. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modelling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Quinn, P.F.; Beven, K.J.; Chevallier, P.; Planchon, O. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process. 1991, 5, 59–79. [Google Scholar] [CrossRef]
- Kiss, R. Determination of drainage network in digital elevation model, utilities and limitations. J. Hung. Geomath. 2004, 2, 16–29. [Google Scholar]
- Frei, C.; Schöll, R.; Fokutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: An intercomparison of scenarios from regional climate models. J. Geophys. Res. 2006, 111, D06105. [Google Scholar] [CrossRef]
- Frei, C. Interpolation of temperature in a mountainous region using non-linear profiles and non-Euclidean distances. Int. J. Climatol. 2014, 34, 1585–1605. [Google Scholar] [CrossRef]
- Frei, C.; Willi, M.; Stöckli, R.; Dürr, B. Spatial analysis of sunshine duration in complex terrain by non-contemporaneous combination of station and satellite data. Int. J. Climatol. 2015, 35, 4471–4790. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Available online: https://sentinels.copernicus.eu (accessed on 8 April 2023).
- U.S. Geological Survey. Available online: https://www.usgs.gov/landsat-missions (accessed on 8 April 2023).
- Schmidt, G.; Jenkerson, C.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; U.S. Geological Survey: Reston, VA, USA, 2013. [CrossRef]
- Vermote, E.; Roger, J.C.; Franch, B.; Shakun, S. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS-Symp. 1974, 351, 309. [Google Scholar]
- Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (normalized burn ratio) and NDVI (normalized difference vegetation index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Louis, J.; Pflug, B.; Debaecker, V.; Mueller-Wilm, U.; Iannone, Q.; Boccia, V.; Gascon, F. Evolutions of Sentinel-2 Level-2A Cloud Masking Algorithm Sen2Cor Prototype First Results. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marojo, R.F.B.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of cloud cover detection algorithms on Sentinel-2 images of the Amazon tropical forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef]
- Nagy, D.; Warshavsky, Z.; Hughes, L.H. Improved Image Aggregation for Large-Scale Cloud-Free Image Creation. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar] [CrossRef]
- Shakrun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle, O.; et al. Cloud mask intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushenko, S.; Thau, D.; Moore, R. Google Earthe Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Stumpf, F.; Schneider, M.K.; Keller, A.; Mayr, A.; Rentschler, T.; Meuli, R.G.; Schaepman, M.; Liebisch, F. Spatial monitoring of grassland management using multi-temporal satellite imagery. Ecol. Indic. 2020, 113, 106201. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendalll’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest pixel composite for agricultural areas using Landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.N.; Arrogante-Funes, P.; Novillo, C.J. Topographic correction to Landsat imagery through slope classification by applying the SCS+C method in mountainous forest areas. ISPRS Int. J. Geo-Inf. 2017, 6, 287. [Google Scholar] [CrossRef]
- Batool, F.; Hennig, C. Clustering with average silhouette width. Comput. Stat. Data Anal. 2021, 158, 107190. [Google Scholar] [CrossRef]
- Schmidinger, J.; Heuvelink, G.B.M. Validation of uncertainty predictions in digital soil mapping. Geoderma 2023, 437, 116585. [Google Scholar] [CrossRef]
- Szatmári, G.; Pásztor, L. Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms. Geoderma 2019, 337, 1329–1340. [Google Scholar] [CrossRef]
- Meyer, H.; Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods. Ecol. Evol. 2021, 12, 1620–1633. [Google Scholar] [CrossRef]
- Broeg, T.; Blaschek, M.; Seitz, S.; Taghizadeh-Mehrjardi, R.; Zepp, S.; Scholten, T. Transferability of covariates to predict soil organic carbon in cropland soils. Remote Sens. 2023, 15, 876. [Google Scholar] [CrossRef]
- Rau, K.; Eggensberger, K.; Schneider, F.; Hennig, P.; Scholten, T. How can we quantify, explain, and apply the uncertainty of complex soil maps predicted with neural networks. Sci. Total Environ. 2024, 944, 173720. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; McBratney, A.B.; Minasny, B.; Malone, B. Evaluating an adaptive sampling algorithm to assist soil survey in New South Wales, Australia. Geoderma Reg. 2020, 21, e00284. [Google Scholar] [CrossRef]
- Fouedjio, F.; Klump, J. Exploring prediction uncertainty of spatial data in geostatistical and machine learning approaches. Environ. Earth Sci. 2019, 78, 38. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning for digital soil mapping. Soil 2019, 5, 79–89. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma 2011, 160, 614–626. [Google Scholar] [CrossRef]
- Somarathna, P.D.S.N.; Minasny, B.; Malone, B.P. More data or better model? Figuring out what matters most for the spatial prediction of soil carbon. Soil Sci. Soc. Am. J. 2017, 81, 1413–1426. [Google Scholar] [CrossRef]
- Lagacherie, P.; Arrouays, D.; Bourennane, H.; Gomez, C.; Nkuba-Kasanda, L. Analyzing the impact of soil spatial sampling on the performances of Digital Soil Mapping models and their evaluation: A numerical experiment on Quantile Random Forest using clay contents obtained from Vis-NIR-SWIR hyperspectral imagery. Geoderma 2020, 375, 114503. [Google Scholar] [CrossRef]
- Voltz, M.; Arrouays, D.; Bispo, A.; Lagacherie, P.; Laroche, B.; Lemercier, B.; Richer-de-Forges, A.; Sauter, J.; Scnebelen, N. Possible futures of soil-mapping in France. Geoderma Reg. 2020, 23, e00334. [Google Scholar] [CrossRef]
- Loiseau, T.; Arrouays, D.; Richer-de-Forges, A.C.; Lagacherie, P.; Ducommun, C.; Minasny, B. Density of soil observations in digital soil mapping: A study in the Mayenne region. Geoderma Reg. 2021, 24, e00358. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. The predictive performance of random forest models with limited sample size and different species traits. Fish. Res. 2020, 227, 105534. [Google Scholar] [CrossRef]
- Mulder, V.L.; Lacoste, M.; Richer-de-Forges, A.C.; Arrouays, D. GlobalSoilMap France: High resolution spatial modelling the soils of France up to two meter depth. Sci. Total Environ. 2016, 573, 1352–1369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.L. Mapping high resolution national soil information grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Pouladi, N.; Gholizadeh, A.; Khosravi, V.; Borůvka, L. Digital mapping of soil organic carbon using remote sensing data: A systematic review. Catena 2023, 232, 107409. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Bou Kheir, R.; Greve, M.B.; Greve, M.H. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; Wu, C. Mapping key soil properties to support agricultural production in Eastern China. Geoderma Reg. 2017, 10, 144–153. [Google Scholar] [CrossRef]
- Sena, N.C.; Veloso, G.V.; Fernandes-Filho, E.I.; Francelino, M.R.; Schaefer, C.E.G.R. Analysis of terrain attributes in different spatial resolutions for digital soil mapping application in southeastern Brazil. Geoderma Reg. 2020, 21, e00268. [Google Scholar] [CrossRef]
- Brevik, E.C. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef]
- Sun, W.; Li, S.; Zhang, G.; Fu, G.; Qi, H.; Li, T. Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Glob. Ecol. Conserv. 2023, 45, e2532. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Kalaiselvi, B.; Suputhra, A.; Lalitha, M.; Vasundhara, R.; Anil Kumar, K.S.; Nair, K.M.; Hedge, R.; Singh, S.K.; Lagacherie, P. Digital soil mapping of soil organic carbon stocks in Western Ghats, South India. Geoderma Reg. 2021, 25, e00387. [Google Scholar] [CrossRef]
- Kaya, F.; Mishra, G.; Francaviglia, R.; Keshavarzi, A. Combining digital covariates and machine learning models to predict spatial variation of soil cation exchange capacity. Land 2023, 12, 819. [Google Scholar] [CrossRef]
- Jena, R.K.; Moharana, P.C.; Dharumarajan, S.; Sharma, G.K.; Ray, P.; Roy, P.D.; Ghosh, D.; Das, B.; Alsuhaibani, A.M.; Gaber, A.; et al. Spatial prediction of soil particle size fractions using digital soil mapping in the north eastern region of India. Land 2023, 12, 1295. [Google Scholar] [CrossRef]
- De Vries, F.T.; Thebault, E.; Liiri, M.; Birkhofer, K.; Tsiafouli, M.A.; Bjørnlund, L.; Jørgensen, H.B.; Brady, M.V.; Christensen, S.; de Ruiter, P.C.; et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 2013, 35, 14296–14301. [Google Scholar] [CrossRef]
- Haghighi, F.; Gorji, M.; Shorafa, M. A study of the effects of land use changes on soil physical properties and organic matter. Land Degrad. Dev. 2010, 21, 496–502. [Google Scholar] [CrossRef]
- Hinge, G.; Surampalli, R.Y.; Goyal, M.K. Prediction of soil organic carbon stock using mapping approach in humid India. Environ. Earth Sci. 2018, 77, 172. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-de-Forges, A.C.; Lehmann, S.; Bourenname, H.; Saby, M.P.; Vaudour, E.; Gomez, C.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data. Remote Sens. 2020, 12, 1389. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Heiden, U.; d’Angelo, P.; Schwind, P.; Karlshöfer, P.; Müller, R.; Zepp, S.; Wiesmeier, M.; Reinartz, P. Soil reflectance composites—Improved thresholding and performance evaluation. Remote Sens. 2022, 14, 4526. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Möller, M.; Wiemeier, M.; Van Wesemael, B. Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat. ISPRS J. Photogramm. Remote Sens. 2023, 202, 287–302. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Wiesmeier, M.; Steininger, M.; Van Wesemael, B. Estimation of soil organic carbon contents in croplands of Bavaria from SCMaP soil reflectance composites. Remote Sens. 2021, 13, 3141. [Google Scholar] [CrossRef]
- Mzid, N.; Castaldi, F.; Tolomio, M.; Pascucci, S.; Casa, R.; Pignatti, S. Evaluation of agricultural bare soil properties retrieval from Landsat 8, Sentinel-2 and PRISMA satellite data. Remote Sens. 2022, 14, 714. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Zhang, X.; Li, Y. Estimation of soil organic matter content using selected spectral subset of hyperspectral data. Geoderma 2022, 409, 115653. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, L.; Wang, M.; Deng, D.; Lv, P.; Wang, R.; Jia, Z.; Hu, Z.; Wu, G.; Shi, T. Digital mapping of soil organic carbon density using newly developed bare soil spectral indices and deep neural network. Catena 2022, 219, 106603. [Google Scholar] [CrossRef]
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using soil library hyperspectral reflectance and machine learning to predict soil organic carbon: Assessing potential of airborne and spaceborne optical soil sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Shaik, R.U.; Periasamy, S.; Zeng, W. Potential assessment of PRISMA hyperspectral imagery for remote sensing. Remote Sens. 2023, 15, 1378. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; Van Wesemael, B. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
Terrain Attribute | Reference |
---|---|
Elevation (a.s.l.) [m] | [88] |
Slope Inclination [°] | [112] |
Terrain Ruggedness Index [-] | [113] |
Terrain Roughness Index [-] | [114] |
Topographic Position Index [-] | [115] |
Profile Curvature [-] | [112] |
Planform Curvature [-] | [112] |
Flow Accumulation, log10 [-] | [116] |
Convergence Index [-] | [117] |
Eastness [-], sin (aspect in rad) | [114] |
Northness [-], cos (aspect in rad) | [114] |
Climate Raster | Reference |
---|---|
Precipitation totals [mm] | [118] |
Temperature daily average [°C] | [119] |
Temperature daily maximum [°C] | [119] |
Temperature daily minimum [°C] | [119] |
Relative sunshine duration [%] | [120] |
Data | Annual Aggregation | Timespan | Resolution |
---|---|---|---|
S2 | Median | 2017–2022 | 10 m |
LA | 1985–2022 | 30 m | |
S2 | Maximum | 2017–2022 | 10 m |
LA | 1985–2022 | 30 m | |
S2 | Minimum | 2017–2022 | 10 m |
LA | 1985–2022 | 30 m | |
S2 | Standard deviation | 2017–2022 | 10 m |
LA | 1985–2022 | 30 m |
Bare Soil Composite | Spectral Range [µm] |
---|---|
BS_BLUE | 0.45–0.52 |
BS_GREEN | 0.52–0.60 |
BS_RED | 0.63–0.69 |
BS_NIR | 0.76–0.90 |
BS_SWIR1 | 1.55–1.75 |
BS_SWIR2 | 2.08–2.35 |
Soil Property | Depth | Total Area | Cropland | Grassland | Woodland |
---|---|---|---|---|---|
Clay | 0–120 cm | 0.34 | 1.20 | 0.22 | 0.20 |
0–30 cm | 0.34 | 1.19 | 0.22 | 0.20 | |
30–60 cm | 0.26 | 0.96 | 0.16 | 0.15 | |
60–120 cm | 0.20 | 0.73 | 0.12 | 0.12 | |
SOC | 0–120 cm | 0.37 | 1.25 | 0.23 | 0.25 |
0–30 cm | 0.37 | 1.24 | 0.22 | 0.24 | |
30–60 cm | 0.20 | 0.62 | 0.11 | 0.17 | |
60–120 cm | 0.12 | 0.33 | 0.06 | 0.12 | |
pH | 0–120 cm | 0.56 | 1.84 | 0.36 | 0.37 |
0–30 cm | 0.56 | 1.83 | 0.35 | 0.37 | |
30–60 cm | 0.29 | 0.97 | 0.17 | 0.19 | |
60–120 cm | 0.21 | 0.72 | 0.12 | 0.15 | |
CECpot | 0–120 cm | 0.06 | 0.21 | 0.04 | 0.04 |
0–30 cm | 0.06 | 0.20 | 0.04 | 0.04 | |
30–60 cm | 0.04 | 0.15 | 0.02 | 0.02 | |
60–120 cm | 0.03 | 0.13 | 0.02 | 0.01 |
Soil Property | Min | Max | Mean | Median | SD | nxy |
---|---|---|---|---|---|---|
Clay [%] | 0.20 | 69.17 | 24.16 | 22.04 | 10.78 | 10,476 |
SOC [%] | 0.01 | 10.19 | 2.14 | 1.75 | 1.76 | 11,329 |
pH [-] | 2.50 | 9.00 | 6.24 | 6.46 | 1.14 | 17,052 |
CECpot [mmckg−1] | 1.04 | 554.35 | 170.46 | 150.48 | 88.43 | 1879 |
Indicator | Depth | Total Area | Cropland | Grassland | Woodland |
---|---|---|---|---|---|
R2 | 0–120 cm | 0.69 | 0.68 | 0.76 | 0.68 |
0–30 cm | 0.69 | 0.68 | 0.73 | 0.62 | |
30–60 cm | 0.76 | 0.75 | 0.77 | 0.77 | |
60–120 cm | 0.62 | 0.61 | 0.63 | 0.64 | |
RMSE | 0–120 cm | 6.07 | 5.98 | 6.03 | 6.32 |
0–30 cm | 5.89 | 5.58 | 5.91 | 6.51 | |
30–60 cm | 5.39 | 5.35 | 5.40 | 5.44 | |
60–120 cm | 7.13 | 7.27 | 6.97 | 6.95 | |
RPI | 0–120 cm | 0.89 | 0.77 | 0.86 | 1.03 |
0–30 cm | 0.91 | 0.80 | 0.86 | 1.06 | |
30–60 cm | 0.84 | 0.71 | 0.84 | 0.97 | |
60–120 cm | 0.92 | 0.81 | 0.89 | 1.07 |
Indicator | Depth | Total Area | Cropland | Grassland | Woodland |
---|---|---|---|---|---|
R2 | 0–120 cm | 0.64 | 0.61 | 0.66 | 0.62 |
0–30 cm | 0.50 | 0.51 | 0.48 | 0.37 | |
30–60 cm | 0.45 | 0.46 | 0.42 | 0.47 | |
60–120 cm | 0.37 | 0.37 | 0.38 | 0.41 | |
RMSE | 0–120 cm | 1.06 | 0.94 | 1.09 | 1.21 |
0–30 cm | 1.16 | 0.96 | 1.13 | 1.5 | |
30–60 cm | 0.92 | 0.91 | 1.01 | 0.83 | |
60–120 cm | 0.92 | 0.84 | 1.01 | 0.90 | |
RPI | 0–120 cm | 3.04 | 2.83 | 2.87 | 3.43 |
0–30 cm | 1.57 | 1.49 | 1.47 | 1.75 | |
30–60 cm | 3.71 | 3.33 | 3.67 | 4.12 | |
60–120 cm | 3.85 | 3.67 | 3.47 | 4.42 |
Indicator | Depth | Total Area | Cropland | Grassland | Woodland |
---|---|---|---|---|---|
R2 | 0–120 cm | 0.76 | 0.72 | 0.72 | 0.71 |
0–30 cm | 0.70 | 0.61 | 0.66 | 0.63 | |
30–60 cm | 0.86 | 0.85 | 0.83 | 0.84 | |
60–120 cm | 0.80 | 0.79 | 0.75 | 0.81 | |
RMSE | 0–120 cm | 0.56 | 0.43 | 0.51 | 0.79 |
0–30 cm | 0.60 | 0.47 | 0.53 | 0.88 | |
30–60 cm | 0.45 | 0.34 | 0.43 | 0.61 | |
60–120 cm | 0.57 | 0.44 | 0.56 | 0.77 | |
RPI | 0–120 cm | 0.39 | 0.25 | 0.39 | 0.53 |
0–30 cm | 0.39 | 0.26 | 0.34 | 0.56 | |
30–60 cm | 0.36 | 0.24 | 0.32 | 0.51 | |
60–120 cm | 0.43 | 0.25 | 0.50 | 0.53 |
Indicator | Depth | Total Area | Cropland | Grassland | Woodland |
---|---|---|---|---|---|
R2 | 0–120 cm | 0.72 | 0.71 | 0.69 | 0.60 |
0–30 cm | 0.71 | 0.71 | 0.68 | 0.48 | |
30–60 cm | 0.67 | 0.76 | 0.62 | 0.60 | |
60–120 cm | 0.59 | 0.66 | 0.57 | 0.31 | |
RMSE | 0–120 cm | 48.61 | 40.45 | 54.17 | 58.83 |
0–30 cm | 50.65 | 42.56 | 52.84 | 65.65 | |
30–60 cm | 44.61 | 34.27 | 59.14 | 38.87 | |
60–120 cm | 45.08 | 40.2 | 52.16 | 45.71 | |
RPI | 0–120 cm | 1.31 | 1.16 | 1.52 | 1.24 |
0–30 cm | 1.18 | 1.04 | 1.33 | 1.17 | |
30–60 cm | 1.55 | 1.38 | 1.94 | 1.32 | |
60–120 cm | 1.19 | 1.06 | 1.29 | 1.22 |
Soil Property | Depth | R2—Chen et al. [5] | R2—Presented Study | Change |
---|---|---|---|---|
Clay | 0–30 cm | 0.44 | 0.69 | +57% |
Total | 0.52 | 0.69 | +33% | |
SOC | 0–30 cm | 0.49 | 0.50 | +2% |
Total | 0.56 | 0.64 | +14% | |
pH | 0–30 cm | 0.60 | 0.70 | +17% |
Total | 0.60 | 0.76 | +27% | |
CECpot | 0–30 cm | 0.37 | 0.71 | +95% |
Total | 0.59 | 0.72 | +22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stumpf, F.; Behrens, T.; Schmidt, K.; Keller, A. Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale. Remote Sens. 2024, 16, 2712. https://doi.org/10.3390/rs16152712
Stumpf F, Behrens T, Schmidt K, Keller A. Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale. Remote Sensing. 2024; 16(15):2712. https://doi.org/10.3390/rs16152712
Chicago/Turabian StyleStumpf, Felix, Thorsten Behrens, Karsten Schmidt, and Armin Keller. 2024. "Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale" Remote Sensing 16, no. 15: 2712. https://doi.org/10.3390/rs16152712
APA StyleStumpf, F., Behrens, T., Schmidt, K., & Keller, A. (2024). Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale. Remote Sensing, 16(15), 2712. https://doi.org/10.3390/rs16152712