Multiple Land-Use Simulations and Driving Factor Analysis by Integrating a Deep Cascade Forest Model and Cellular Automata: A Case Study in the Pearl River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Data
2.2. Methodology
2.2.1. Mining Transition Rules of Multiple Land-Use Changes Using the DCF Model
2.2.2. Factor Importance Analysis Using the DCF-MDI Method
2.2.3. DCF-CA for Multiple Land-Use Simulation
2.2.4. Accuracy Assessment
3. Results
3.1. Model Implementation
3.2. Model Validation
3.3. Parameters Sensitivity Analysis
3.4. Factor Importance Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Name | Abbreviation | Resolution | Source |
---|---|---|---|---|
1 | Elevation | ele | 30 m | ALOS |
2 | Slope | slo | 30 m | ALOS |
3 | Distance to rivers | disRiv | Vector | OSM river |
4 | Annual average temperature | mTem | 1 km | WorldClim2 |
5 | Annual average precipitation | mPre | 1 km | WorldClim2 |
6 | Seasonal temperature variation | sTem | 1 km | WorldClim2 |
7 | Seasonal precipitation variation | sPre | 1 km | WorldClim2 |
8 | Distance to provincial capitals | disCap | 1 km | Gaode POI |
9 | Distance to city centers | disCit | Vector | Gaode POI |
10 | Distance to county centers | disCou | Vector | Gaode POI |
11 | Distance to airports | disAir | Vector | Gaode POI |
12 | Distance to expressways | disExp | Vector | OSM road |
13 | Distance to ordinary roads | disOrd | Vector | OSM road |
Land-Use Types | Farmland | Vegetation | Water | Urban |
---|---|---|---|---|
Farmland | 0 | 0 | 1 | 0 |
Vegetation | 0 | 0 | 1 | 0 |
Water | 1 | 1 | 0 | 1 |
Urban | 1 | 1 | 1 | 0 |
References
- Huber, V.; Neher, I.; Bodirsky, B.L.; Höfner, K.; Schellnhuber, H.J. Will the World Run out of Land? A Kaya-Type Decomposition to Study Past Trends of Cropland Expansion. Environ. Res. Lett. 2014, 9, 024011. [Google Scholar] [CrossRef]
- Barretto, A.G.O.P.; Berndes, G.; Sparovek, G.; Wirsenius, S. Agricultural Intensification in Brazil and Its Effects on Land-Use Patterns: An Analysis of the 1975–2006 Period. Glob. Chang. Biol. 2013, 19, 1804–1815. [Google Scholar] [CrossRef]
- Qian, S.; Wang, L.Y.; Gong, X.F. Climate Change and Its Effects on Grassland Productivity and Carrying Capacity of Livestock in the Main Grasslands of China. Rangel. J. 2012, 34, 341–347. [Google Scholar] [CrossRef]
- Phelps, L.N.; Kaplan, J.O. Land Use for Animal Production in Global Change Studies: Defining and Characterizing a Framework. Glob. Chang. Biol. 2017, 23, 4457–4471. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F. Global Forest Transition: Prospects for an End to Deforestation. Annu. Rev. Environ. Resour. 2011, 36, 343–371. [Google Scholar] [CrossRef]
- De Sy, V.; Herold, M.; Achard, F.; Beuchle, R.; Clevers, J.; Lindquist, E.; Verchot, L. Land Use Patterns and Related Carbon Losses Following Deforestation in South America. Environ. Res. Lett. 2015, 10, 124004. [Google Scholar]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-Spatiotemporal-Resolution Mapping of Global Urban Change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Darrel Jenerette, G.; Potere, D. Global Analysis and Simulation of Land-Use Change Associated with Urbanization. Landsc. Ecol. 2010, 25, 657–670. [Google Scholar] [CrossRef]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares-Filho, B.S. Processes of Land Use Change in Mining Regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the Environmental and Economic Impact of Mining for Post-Mined Land Restoration and Land-Use: A Review. J. Environ. Manag. 2021, 279, 111623. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Mcdonald, R.I.; Kareiva, P.; Forman, R.T.T. The Implications of Current and Future Urbanization for Global Protected Areas and Biodiversity Conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Rentschler, J.; Avner, P.; Marconcini, M.; Su, R.; Strano, E.; Vousdoukas, M.; Hallegatte, S. Global Evidence of Rapid Urban Growth in Flood Zones since 1985. Nature 2023, 622, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wu, S.; Ngar-Cheung Lau, G.; Pei, T.; Liu, Z.; Wang, X.; Ning, G.; Chan, T.O.; Yang, Y.; Zhang, W. Anthropogenic Forcing Has Increased the Risk of Longer-Traveling and Slower-Moving Large Contiguous Heatwaves. Sci. Adv. 2024, 10, eadl1598. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Huang, M.; Gong, D.; Lin, H.; Fan, Y.; Du, W. Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sens. 2023, 15, 4645. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Yao, Y.; Hong, Y.; Jinbao, Z. Mining Transition Rules of Cellular Automata for Simulating Urban Expansion by Using the Deep Learning Techniques. Int. J. Geogr. Inf. Sci. 2018, 32, 2076–2097. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at a 1-Km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of Land Use Changes under the Plant Functional Type Classification in Different SSP-RCP Scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Wang, K.; He, T.; Xiao, W.; Yang, R. Projections of Future Spatiotemporal Urban 3D Expansion in China under Shared Socioeconomic Pathways. Landsc. Urban Plan. 2024, 247, 105043. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Liu, X.; Xu, X.; Chen, G. Experiences and Issues of Using Cellular Automata for Assisting Urban and Regional Planning in China. Int. J. Geogr. Inf. Sci. 2017, 31, 1606–1629. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.; Zhang, B.; Zeng, H. Simulating Urban Land Growth by Incorporating Historical Information into a Cellular Automata Model. Landsc. Urban Plan. 2021, 214, 104168. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, D.; Ren, Q.; Qi, T.; He, C. Impacts of Future Urban Expansion on Natural Habitats Will Intensify in China: Scenario Analysis with the Improved LUSD-Urban Model. Landsc. Ecol. 2023, 38, 2547–2567. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. A New Cellular Automata Framework of Urban Growth Modeling by Incorporating Statistical and Heuristic Methods. Int. J. Geogr. Inf. Sci. 2020, 34, 74–97. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Wang, H.; He, S.; Zeng, H.; Cao, X.; Song, Y.; Tung, C.L.; Hu, S. Modeling Self-Organized Urban Growth by Incorporating Stakeholders’ Interactions into the Neighborhood of Cellular Automata. Cities 2024, 149, 104976. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, X.; Li, W.; Ou, J.; Cai, Y.; Chen, G.; Li, M.; Li, G.; Zhang, H.; Xu, X. Global Simulation of Fine Resolution Land Use/Cover Change and Estimation of Aboveground Biomass Carbon under the Shared Socioeconomic Pathways. J. Environ. Manag. 2022, 312, 114943. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Chen, G.; Yan, Y.; Li, B.; Zeng, L.; Ou, J.; Liu, K.; Liu, X. Simulation of Urban Land Expansion in China at 30 m Resolution through 2050 under Shared Socioeconomic Pathways. GISci. Remote Sens. 2022, 59, 1301–1320. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Chen, G.; Guo, S.; Yao, Y. Mixed-Cell Cellular Automata: A New Approach for Simulating the Spatio-Temporal Dynamics of Mixed Land Use Structures. Landsc. Urban Plan. 2021, 205, 103960. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhang, D.; Zhang, J.; He, J.; Xu, X. Simulating Mixed Land-Use Change under Multi-Label Concept by Integrating a Convolutional Neural Network and Cellular Automata: A Case Study of Huizhou, China. GISci. Remote Sens. 2022, 59, 609–632. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Li, X. Calibrating a Land Parcel Cellular Automaton (LP-CA) for Urban Growth Simulation Based on Ensemble Learning. Int. J. Geogr. Inf. Sci. 2017, 31, 2480–2504. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, S.; Wang, H.; Yang, J.; Wang, Z. Incorporating Spatial Heterogeneity to Model Spontaneous and Self-Organized Urban Growth. Appl. Geogr. 2024, 163, 103196. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Zhang, B.; Zeng, H.; Li, J.; Zhang, J. A Methodology to Geographic Cellular Automata Model Accounting for Spatial Heterogeneity and Adaptive Neighborhoods. Int. J. Geogr. Inf. Sci. 2024, 38, 699–725. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, C. The Effects of Sample Size and Sample Prevalence on Cellular Automata Simulation of Urban Growth. Int. J. Geogr. Inf. Sci. 2022, 36, 158–187. [Google Scholar] [CrossRef]
- Bastos Moroz, C.; Sieg, T.; Thieken, A.H. Spatial Constraints in Cellular Automata-Based Urban Growth Models: A Systematic Comparison of Classifiers and Input Urban Maps. Comput. Environ. Urban Syst. 2024, 110, 102118. [Google Scholar] [CrossRef]
- Allan, A.; Soltani, A.; Abdi, M.H.; Zarei, M. Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review. Land 2022, 11, 1222. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, X.; Yan, Y.; Zhang, D.; He, J.; He, J.; Zhang, X.; Zhang, H.; Li, M. Integrating a Deep Forest Algorithm with Vector-Based Cellular Automata for Urban Land Change Simulation. Trans. GIS 2022, 26, 2056–2080. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Cerqueira, G.C.; Pennachin, C.L. DINAMICA—A Stochastic Cellular Automata Model Designed to Simulate the Landscape Dynamics in an Amazonian Colonization Frontier. Ecol. Modell. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Y.; Tong, X.; Liu, S.; Xie, H.; Gao, C.; Lei, Z. Modeling ESV Losses Caused by Urban Expansion Using Cellular Automata and Geographically Weighted Regression. Sci. Total Environ. 2020, 712, 136509. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Shi, X. Cellular Automata for Simulating Land Use Changes Based on Support Vector Machines. Comput. Geosci. 2008, 34, 592–602. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Chen, G.; Hu, G. Simulation of Urban Expansion Based on Cellular Automata and Maximum Entropy Model. Sci. China Earth Sci. 2020, 63, 701–712. [Google Scholar] [CrossRef]
- Al-Sharif, A.A.A.; Pradhan, B. A Novel Approach for Predicting the Spatial Patterns of Urban Expansion by Combining the Chi-Squared Automatic Integration Detection Decision Tree, Markov Chain and Cellular Automata Models in GIS. Geocarto Int. 2015, 30, 858–881. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple Intra-Urban Land Use Simulations and Driving Factors Analysis: A Case Study in Huicheng, China. GISci. Remote Sens. 2019, 56, 282–308. [Google Scholar] [CrossRef]
- Huang, M.; Gong, D.; Zhang, L.; Lin, H.; Chen, Y.; Zhu, D.; Xiao, C.; Altan, O. Spatiotemporal Dynamics and Forecasting of Ecological Security Pattern under the Consideration of Protecting Habitat: A Case Study of the Poyang Lake Ecoregion. Int. J. Digit. Earth 2024, 17, 2376277. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Chen, G.; Leng, J.; Wen, Y.; Chen, G. Coupling Fuzzy Clustering and Cellular Automata Based on Local Maxima of Development Potential to Model Urban Emergence and Expansion in Economic Development Zones. Int. J. Geogr. Inf. Sci. 2020, 34, 1930–1952. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.; Zhang, Z.; Wang, X. Built-up Land Expansion Simulation with Combination of Naive Bayes and Cellular Automaton Model—A Case Study of the Shanghai-Hangzhou Bay Agglomeration. Growth Chang. 2021, 52, 1804–1825. [Google Scholar] [CrossRef]
- Zhai, Y.; Yao, Y.; Guan, Q.; Liang, X.; Li, X.; Pan, Y.; Yue, H.; Yuan, Z.; Zhou, J. Simulating Urban Land Use Change by Integrating a Convolutional Neural Network with Vector-Based Cellular Automata. Int. J. Geogr. Inf. Sci. 2020, 34, 1475–1499. [Google Scholar] [CrossRef]
- Wang, J.; Hadjikakou, M.; Hewitt, R.J.; Bryan, B.A. Simulating Large-Scale Urban Land-Use Patterns and Dynamics Using the U-Net Deep Learning Architecture. Comput. Environ. Urban Syst. 2022, 97, 101855. [Google Scholar] [CrossRef]
- Xing, W.; Qian, Y.; Guan, X.; Yang, T.; Wu, H. A Novel Cellular Automata Model Integrated with Deep Learning for Dynamic Spatio-Temporal Land Use Change Simulation. Comput. Geosci. 2020, 137, 104430. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J.; Jiao, J.; Li, Y.; Liu, X.; Zhu, W. Modeling Dynamic Land Use Changes in the Eastern Portion of the Hexi Corridor, China by Cnn-Gru Hybrid Model. GISci. Remote Sens. 2022, 59, 501–519. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, Y.; Liu, X.; Zhang, X.; Zhang, H. A Maps-to-Maps Approach for Simulating Urban Land Expansion Based on Convolutional Long Short-Term Memory Neural Networks. Int. J. Geogr. Inf. Sci. 2024, 38, 503–526. [Google Scholar] [CrossRef]
- Zhu, Y.; Geiß, C.; So, E.; Bardhan, R.; Taubenböck, H.; Jin, Y. Urban Expansion Simulation with an Explainable Ensemble Deep Learning Framework. Heliyon 2024, 10, e28318. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: Las Vegas, NV, USA, 2016; Volume 2016, pp. 770–778. [Google Scholar]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Zhuang, H.; Liu, X.; Liang, X.; Yan, Y.; He, J.; Cai, Y.; Wu, C.; Zhang, X.; Zhang, H. Tensor-CA: A High-Performance Cellular Automata Model for Land Use Simulation Based on Vectorization and GPU. Trans. GIS 2022, 26, 755–778. [Google Scholar] [CrossRef]
- Cao, M.; Tang, G.; Shen, Q.; Wang, Y. A New Discovery of Transition Rules for Cellular Automata by Using Cuckoo Search Algorithm. Int. J. Geogr. Inf. Sci. 2015, 29, 806–824. [Google Scholar] [CrossRef]
- Sneath, D. State Policy and Pasture Degradation in Inner Asia. Science 1998, 281, 1147–1148. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-Cover and Land-Use Change in a Mediterranean Landscape: A Spatial Analysis of Driving Forces Integrating Biophysical and Human Factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land Use and Land Cover Change and Driving Mechanism in the Arid Inland River Basin: A Case Study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Du, M.; Liu, N.; Hu, X. Techniques for Interpretable Machine Learning. Commun. ACM 2019, 63, 68–77. [Google Scholar] [CrossRef]
- Pei, L.; Lai, Y.; Piao, P.; Yang, F. Margin Based Permutation Variable Importance: A Stable Importance Measure for Random Forest. In Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2017), Nanjing, China, 24–26 November 2017; Volume 2018, pp. 1–8. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 2017, pp. 4766–4775. [Google Scholar]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying Core Driving Factors of Urban Land Use Change from Global Land Cover Products and POI Data Using the Random Forest Method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving Land Cover Classification in an Urbanized Coastal Area by Random Forests: The Role of Variable Selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Feng, J. Deep Forest. Natl. Sci. Rev. 2019, 6, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Zhou, J.; Zheng, W.; Feng, J.; Li, L.; Liu, Z.; Li, M.; Zhang, Z.; Chen, C.; Li, X.; et al. Distributed Deep Forest and Its Application to Automatic Detection of Cash-Out Fraud. ACM Trans. Intell. Syst. Technol. 2019, 10, 55. [Google Scholar] [CrossRef]
- Yin, L.; Sun, Z.; Gao, F.; Liu, H. Deep Forest Regression for Short-Term Load Forecasting of Power Systems. IEEE Access 2020, 8, 49090–49099. [Google Scholar] [CrossRef]
- Zhao, K.; Xu, Z.; Zhang, T.Z.; Tang, Y.; Yan, M. Simplified Deep Forest Model Based Just-in-Time Defect Prediction for Android Mobile Apps. IEEE Trans. Reliab. 2021, 70, 848–859. [Google Scholar] [CrossRef]
- Sun, L.; Mo, Z.; Yan, F.; Xia, L.; Shan, F.; Ding, Z.; Song, B.; Gao, W.; Shao, W.; Shi, F.; et al. Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification with Chest CT. IEEE J. Biomed. Health Inform. 2020, 24, 2798–2805. [Google Scholar] [CrossRef]
- Yang, J.; Tang, W.; Gong, J.; Shi, R.; Zheng, M.; Dai, Y. Simulating Urban Expansion Using Cellular Automata Model with Spatiotemporally Explicit Representation of Urban Demand. Landsc. Urban Plan. 2023, 231, 104640. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial Patterns and Driving Forces of Land Use Change in China during the Early 21st Century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The Rapid and Massive Urban and Industrial Land Expansions in China between 1990 and 2010: A CLUD-Based Analysis of Their Trajectories, Patterns, and Drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Zhang, Y.; Huang, M. Tele-Connecting China’s Future Urban Growth to Impacts on Ecosystem Services under the Shared Socioeconomic Pathways. Sci. Total Environ. 2019, 652, 765–779. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X. Global Land Projection Based on Plant Functional Types with a 1-Km Resolution under Socio-Climatic Scenarios. Sci. Data 2022, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhuang, H.; Liu, X.; Chen, G. Cell-Level Coupling of a Mechanistic Model to Cellular Automata for Improving Land Simulation Land Simulation. GISci. Remote Sens. 2023, 60, 2166443. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Liu, P.; Hong, Y.; Zhang, Y.; Mai, K. Simulating Urban Land-Use Changes at a Large Scale by Integrating Dynamic Land Parcel Subdivision and Vector-Based Cellular Automata. Int. J. Geogr. Inf. Sci. 2017, 31, 2452–2479. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Liu, X.; Wang, R.; Cai, Z.; Cai, Y.; Yin, X. Deep Multigrained Cascade Forest for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8169–8183. [Google Scholar] [CrossRef]
- Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding Variable Importances in Forests of Randomized Trees. In Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1, Lake Tahoe, NV, USA, 5–10 December 2013; Volume 2013, pp. 431–439. [Google Scholar]
- Calle, M.L.; Urrea, V. Stability of Random Forest Importance Measures. Brief. Bioinform. 2011, 12, 86–89. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y.; Liang, X.; Yao, Y.; Ma, T.; Guan, Q. Simulating Urban Expansion by Incorporating an Integrated Gravitational Field Model into a Demand-Driven Random Forest-Cellular Automata Model. Cities 2021, 109, 103044. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H. A New Type of Dual-Scale Neighborhood Based on Vectorization for Cellular Automata Models. GISci. Remote Sens. 2021, 58, 386–404. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Wang, S.; Liu, X.; Ai, B. Simulating Urban Form and Energy Consumption in the Pearl River Delta under Different Development Strategies. Ann. Assoc. Am. Geogr. 2013, 103, 1567–1585. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A Review of Assessment Methods for Cellular Automata Models of Land-Use Change and Urban Growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Pontius, R.G.; Walker, R.; Yao-kumah, R.; Arima, E.; Aldrich, S.; Caldas, M.; Vergara, D. Accuracy Assessment for a Simulation Model of Amazonian Deforestation. Ann. Assoc. Am. Geogr. 2007, 97, 677–695. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Liu, L.; He, J.; Ai, B. A Bottom-up Approach to Discover Transition Rules of Cellular Automata Using Ant Intelligence. Int. J. Geogr. Inf. Sci. 2008, 22, 1247–1269. [Google Scholar] [CrossRef]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata Modelling Approach to Explore Future Land Use/Cover Change in Attica (Greece), under Different Socio-Economic Realities and Scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y. Projecting the Future Impacts of China’s Cropland Balance Policy on Ecosystem Services under the Shared Socioeconomic Pathways. J. Clean. Prod. 2020, 250, 119489. [Google Scholar] [CrossRef]
- Brown, D.G.; Page, S.; Riolo, R.; Zellner, M.; Rand, W. Path Dependence and the Validation of Agent-Based Spatial Models of Land Use. Int. J. Geogr. Inf. Sci. 2005, 19, 153–174. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble Deep Learning: A Review. Eng. Appl. Artif. Intell. 2022, 115, 105151. [Google Scholar] [CrossRef]
- He, Y.-X.; Lyu, S.-H.; Jiang, Y. Interpreting Deep Forest through Feature Contribution and MDI Feature Importance. ACM Trans. Knowl. Discov. Data 2024. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Zhang, Y.; Yu, L.; Du, Z.; Hu, G.; Liu, X. The Impacts of Spatial Resolutions on Global Urban-Related Change Analyses and Modeling. iScience 2022, 25, 105660. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xie, J.; Li, W.; Li, X.; Hay Chung, L.C.; Ren, C.; Liu, X. Future “Local Climate Zone” Spatial Change Simulation in Greater Bay Area under the Shared Socioeconomic Pathways and Ecological Control Line. Build. Environ. 2021, 203, 108077. [Google Scholar] [CrossRef]
- Tu, W.; Gao, W.; Li, M.; Yao, Y.; He, B.; Huang, Z.; Zhang, J.; Guo, R. Spatial Cooperative Simulation of Land Use-Population-Economy in the Greater Bay Area, China. Int. J. Geogr. Inf. Sci. 2024, 38, 381–406. [Google Scholar] [CrossRef]
Model\Metric | FoM | PA | UA | OA |
---|---|---|---|---|
DCF-CA | 23.79 | 39.77 | 36.35 | 91.50 |
RF-CA | 21.76 | 38.25 | 32.81 | 90.82 |
ANN-CA | 21.53 | 35.81 | 34.21 | 91.29 |
CNN-CA | 20.31 | 37.22 | 30.18 | 90.26 |
Types\Model | DCF-CA | RF-CA | ANN-CA | CNN-CA |
---|---|---|---|---|
Farmland | 22.92 | 20.59 | 20.69 | 18.53 |
Vegetation | 21.05 | 19.73 | 18.80 | 18.69 |
Urban | 28.31 | 26.28 | 26.00 | 25.55 |
City\Model | DCF-CA | RF-CA | ANN-CA | CNN-CA |
---|---|---|---|---|
Zhongshan | 23.48 | 23.09 | 21.57 | 22.76 |
Dongguan | 42.09 | 38.41 | 38.35 | 37.53 |
Huizhou | 15.06 | 13.96 | 13.24 | 12.74 |
Zhaoqing | 10.19 | 10.02 | 8.97 | 8.56 |
Jiangmen | 14.07 | 13.41 | 11.90 | 12.32 |
Foshan | 30.81 | 28.47 | 27.89 | 26.86 |
Zhuhai | 18.03 | 17.46 | 14.40 | 17.22 |
Shenzhen | 33.30 | 31.57 | 31.40 | 32.46 |
Guangzhou | 25.05 | 23.17 | 22.43 | 21.19 |
Factors\ Contribution | Farmland | Vegetation | Urban | |||
---|---|---|---|---|---|---|
RF-MDI | DCF-MDI | RF-MDI | DCF-MDI | RF-MDI | DCF-MDI | |
slo | 0.76 | 0.14 | 0.54 | 0.10 | 0.54 | 0.09 |
ele | 0.77 | 0.16 | 0.52 | 0.09 | 1.05 | 0.18 |
disRiv | 0.5 | 0.08 | 0.29 | 0.06 | 0.29 | 0.05 |
mTem | 0.46 | 0.09 | 0.26 | 0.05 | 0.84 | 0.16 |
mPre | 0.3 | 0.05 | 0.18 | 0.04 | 0.1 | 0.02 |
sTem | 0.39 | 0.07 | 0.21 | 0.04 | 0.12 | 0.02 |
sPre | 0.4 | 0.08 | 0.24 | 0.05 | 0.13 | 0.02 |
disCap | 0.43 | 0.09 | 0.2 | 0.04 | 0.31 | 0.05 |
disCit | 0.45 | 0.08 | 0.22 | 0.05 | 0.75 | 0.14 |
disCou | 0.38 | 0.06 | 0.25 | 0.04 | 0.17 | 0.04 |
disAir | 0.45 | 0.09 | 0.24 | 0.05 | 0.92 | 0.18 |
disExp | 0.9 | 0.20 | 0.48 | 0.09 | 1.20 | 0.21 |
disOrd | 0.38 | 0.08 | 0.24 | 0.04 | 0.58 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, H.; Liu, X.; Yan, Y.; Li, B.; Wu, C.; Liu, W. Multiple Land-Use Simulations and Driving Factor Analysis by Integrating a Deep Cascade Forest Model and Cellular Automata: A Case Study in the Pearl River Delta, China. Remote Sens. 2024, 16, 2750. https://doi.org/10.3390/rs16152750
Zhuang H, Liu X, Yan Y, Li B, Wu C, Liu W. Multiple Land-Use Simulations and Driving Factor Analysis by Integrating a Deep Cascade Forest Model and Cellular Automata: A Case Study in the Pearl River Delta, China. Remote Sensing. 2024; 16(15):2750. https://doi.org/10.3390/rs16152750
Chicago/Turabian StyleZhuang, Haoming, Xiaoping Liu, Yuchao Yan, Bingjie Li, Changjiang Wu, and Wenkai Liu. 2024. "Multiple Land-Use Simulations and Driving Factor Analysis by Integrating a Deep Cascade Forest Model and Cellular Automata: A Case Study in the Pearl River Delta, China" Remote Sensing 16, no. 15: 2750. https://doi.org/10.3390/rs16152750
APA StyleZhuang, H., Liu, X., Yan, Y., Li, B., Wu, C., & Liu, W. (2024). Multiple Land-Use Simulations and Driving Factor Analysis by Integrating a Deep Cascade Forest Model and Cellular Automata: A Case Study in the Pearl River Delta, China. Remote Sensing, 16(15), 2750. https://doi.org/10.3390/rs16152750