Advanced Semi-Automatic Approach for Identifying Damaged Surfaces in Cultural Heritage Sites: Integrating UAVs, Photogrammetry, and 3D Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Collection and Processing
2.2. Analysis Methods
2.2.1. Classification of the Point Clouds
2.2.2. Application of the Degradation Index Algorithm
2.2.3. Application of the RANSAC Algorithm
2.2.4. Application of the FACETS Algorithm
3. Results
3.1. Processing and Classification of the Point Clouds
3.2. Implementation of the Analyses for the Determination of Damaged Surfaces
3.2.1. Implementation of the Degradation Index Algorithm
3.2.2. Implementation of the RANSAC Algorithm
3.2.3. Implementation of the FACETS Algorithm
3.2.4. Final Results Obtained for Degraded Surfaces and Non-Degraded Surfaces
3.2.5. Validation of the Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PC | point cloud |
DI | degradation index algorithm |
RANSAC | random sample consensus algorithm |
R | roughness |
SV | surface variation |
P | planarity |
NCR | normal change rate |
A | anisotropy |
SE | sum of eigenvalues |
O | omnivariance |
V | verticality |
FBC | feature-based clustering |
NDS | non-degraded surfaces |
DS | damaged surfaces |
FM | fast marching |
RE | reprojection errors |
RMSE | root mean square error |
RMS | root mean square |
BIM | building information modeling |
HBIM | heritage building information modeling |
UAV | unmanned aerial vehicle |
SfM | structure from motion |
GCPs | ground control points |
CPs | check points |
LMB | learning-based methods |
NLMB | non-learning-based methods |
References
- Ilies, D.C.; Caciora, T.; Herman, G.V.; Ilieș, A.; Ropa, M.; Baias, Ș. Geohazards affecting cultural heritage monuments. A complex case study from Romania. GeoJ. Tour. Geosites 2020, 31, 1103–1112. [Google Scholar] [CrossRef]
- Le, T.D.; Le, T.A.; Nguyen, P.H.; Ho, Y.T.P.; Le, B.H.P. Factors affecting the decision of selecting a destination for international tourists at the Hoi an world cultural heritage site. GeoJ. Tour. Geosites 2023, 51 (Suppl. S4), 1663–1675. [Google Scholar] [CrossRef]
- Caciora, T.; Herman, G.V.; Ilieș, A.; Baias, Ș.; Ilieș, D.C.; Josan, I.; Hodor, N. The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania. Remote Sens. 2021, 13, 1758. [Google Scholar] [CrossRef]
- Caciora, T.; Jubran, A.; Ilies, D.C.; Hodor, N.; Blaga, L.; Ilies, A.; Grama, V.; Sebesan, B.; Safarov, B.; Ilies, G.; et al. Digitization of the Built Cultural Heritage: An Integrated Methodology for Preservation and Accessibilization of an Art Nouveau Museum. Remote Sens. 2023, 15, 5763. [Google Scholar] [CrossRef]
- Franczuk, J.; Boguszewska, K.; Parrinello, S.; Dell’Amico, A.; Galasso, F.; Gleń, P. Direct use of point clouds in real-time interaction with the cultural heritage in pandemic and post-pandemic tourism on the case of Kłodzko Fortress. Digit. Appl. Archaeol. Cult. Herit. 2022, 24, e00217. [Google Scholar] [CrossRef]
- Poux, F.; Valembois, Q.; Mattes, C.; Kobbelt, L.; Billen, R. Initial User-Centered Design of a Virtual Reality Heritage System: Applications for Digital Tourism. Remote Sens. 2020, 12, 2583. [Google Scholar] [CrossRef]
- Craiut, L.; Bungau, C.; Bungau, T.; Grava, C.; Otrisal, P.; Radu, A.-F. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability 2022, 14, 15728. [Google Scholar] [CrossRef]
- Capolupo, A. Accuracy Assessment of Cultural Heritage Models Extracting 3D Point Cloud Geometric Features with RPAS SfM-MVS and TLS Techniques. Drones 2021, 5, 145. [Google Scholar] [CrossRef]
- Galanakis, D.; Maravelakis, E.; Pocobelli, D.P.; Vidakis, N.; Petousis, M.; Konstantaras, A.; Tsakoumaki, M. SVD-based point cloud 3D stone by stone segmentation for cultural heritage structural analysis—The case of the Apollo Temple at Delphi. J. Cult. Herit. 2023, 61, 177–187. [Google Scholar] [CrossRef]
- Moyano, J.; Nieto-Julián, J.E.; Lenin, L.M.; Bruno, S. Operability of Point Cloud Data in an Architectural Heritage Information Model. Int. J. Archit. Herit. Conserv. Anal. Restor. 2022, 16, 1588–1607. [Google Scholar] [CrossRef]
- Grifoni, E.; Vannini, E.; Lunghi, I.; Faraioli, P.; Ginanni, M.; Santacesarea, A.; Fontana, R. 3D multi-modal point clouds data fusion for metrological analysis and restoration assessment of a panel painting. J. Cult. Herit. 2024, 66, 356–366. [Google Scholar] [CrossRef]
- Herban, S.; Costantino, D.; Alfio, V.S.; Pepe, M. Use of Low-Cost Spherical Cameras for the Digitisation of Cultural Heritage Structures into 3D Point Clouds. J. Imaging 2022, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Barazzetti, L.; Binda, L.; Scaioni, M.; Taranto, P. Photogrammetric survey of complex geometries with low-cost software: Application to the ‘G1’ temple in Myson, Vietnam. J. Cult. Herit. 2011, 12, 253–262. [Google Scholar] [CrossRef]
- Grussenmeyer, P.; Alby, E.; Landes, T.; Koehl, M.; Guillemin, S.; Hullo, J.; Assali, P.; Smigiel, E. Recording approach of heritage sites based on merging point clouds from high resolution photogrammetry and terrestrial laser scanning. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B5, 553–558. [Google Scholar] [CrossRef]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Mostafavi, A.; Scaioni, M.; Yordanov, V. Photogrammetric solutions for 3D modeling of cultural heritage sites in remote areas. In Proceedings of the ISPRS WG IV/3, WG I/8 & WG II/4ISPRS International GeoSpatial Conference 2019, Joint Conferences of 5th Sensors and Models in Photogrammetry and Remote Sensing (SMPR) and 3rd Geospatial Information Research (GI Research) (Volume XLII-4/W18), Karaj, Iran, 12–14 October 2019; Volume XLII-4-W18, pp. 765–772. [Google Scholar] [CrossRef]
- Fryskowska, A.; Stachelek, J. A no-reference method of geometric content quality analysis of 3D models generated from laser scanning point clouds for hBIM. J. Cult. Herit. 2018, 34, 95–108. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Moselhi, O.; Bagchi, A. Image-based retrieval of concrete crack properties for bridge inspection. Autom. Constr. 2014, 39, 180–194. [Google Scholar] [CrossRef]
- Jaradat, M.; Al Majali, H.; Bendea, C.; Bungau, C.C.; Bungau, T. Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions. Buildings 2023, 14, 40. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Bruno, S.; De Fino, M.; Fatiguso, F. Historic Building Information Modelling: Performance assessment for diagnosis-aided information modelling and management. Autom. Constr. 2018, 86, 256–276. [Google Scholar] [CrossRef]
- Musicco, A.; Galantucci, R.; Bruno, S.; Verdoscia, C.; Fatiguso, F. Automatic point cloud segmentation for the detection of alterations on historical buildings through an unsupervised and clustering-based machine learning approach. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 2, 129–136. [Google Scholar] [CrossRef]
- Matrone, F.; Martini, M. Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds. Virtual Archaeol. Rev. 2021, 12, 73–84. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cotella, V.; Rodrigues, H.; Rocha, E.; Freitas, F.; Matos, R. Application of Deep Learning Approach for the Classification of Buildings’ Degradation State in a BIM Methodology. Appl. Sci. 2022, 12, 7403. [Google Scholar] [CrossRef]
- Peng, S.; Nam, H. A Robust Crack Filter Based on Local Gray Level Variation and Multiscale Analysis for Automatic Crack Detection in X-ray Images. J. Electr. Eng. Technol. 2016, 11, 1035–1041. [Google Scholar] [CrossRef]
- Hamrat, M.; Boulekbache, B.; Chemrouk, M.; Amziane, S. Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using Digital Image Correlation technique. Constr. Build. Mater. 2016, 106, 678–692. [Google Scholar] [CrossRef]
- Muñoz-Pandiella, I.; Akoglu, K.; Bosch, C.; Rushmeier, H. Towards semi-automatic scaling detection on flat stones. Eurograph. Assoc. 2017, 2017, 49–58. [Google Scholar] [CrossRef]
- Sánchez, J.; Quirós, E. Semi-automatic detection and classification of materials in historic buildings with low-cost photogrammetric equipment. J. Cult. Herit. 2017, 25, 21–30. [Google Scholar] [CrossRef]
- Kong, X.; Hucks, R.G. Preserving our heritage: A photogrammetry-based digital twin framework for monitoring deteriorations of historic structures. Autom. Constr. 2023, 152, 104928. [Google Scholar] [CrossRef]
- Pierdicca, R.; Paolanti, M.; Matrone, F.; Martini, M.; Morbidoni, C.; Malinverni, E.; Frontoni, E.; Lingua, A. Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage. Remote Sens. 2020, 12, 1005. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.; Delegou, E.; Karoglou, M.; Bakolas, A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Boonpook, W.; Tan, Y.; Xu, B. Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry. Int. J. Remote Sens. 2021, 42, 1–19. [Google Scholar] [CrossRef]
- Mosincat, C.; Tarau, A. Evacuarea Judeţelor din Nord-Vestul Transilvaniei (1940) şi Consecinţele Acesteia Asupra Judeţului Bihor [The Evacuation of the Counties from the North-West of Transylvania (1940) and Its Consequences on Bihor County]; Editura TIPO MC: Oradea, Romania, 2005. [Google Scholar]
- Mosincat, C. Cazemata [The Casemate]; Editura TIPO MC: Oradea, Romania, 2021. [Google Scholar]
- James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar]
- Martínez-Fernández, A.; Serrano, E.; Pisabarro, A.; Sánchez-Fernández, M.; de Sanjosé, J.J.; Gómez-Lende, M.; Rangel-de Lázaro, G.; Benito-Calvo, A. The Influence of Image Properties on High-Detail SfM Photogrammetric Surveys of Complex Geometric Landforms: The Application of a Consumer-Grade UAV Camera in a Rock Glacier Survey. Remote Sens. 2022, 14, 3528. [Google Scholar] [CrossRef]
- Zhou, Y.; Daakir, M.; Rupnik, E.; Pierrot-Deseilligny, M. A two-step approach for the correction of rolling shutter distortion in UAV photogrammetry. ISPRS J. Photogramm. Remote Sens. 2020, 160, 51–66. [Google Scholar] [CrossRef]
- Kong, D.; Xu, L.; Li, X.; Li, S. K-Plane-Based Classification of Airborne LiDAR Data for Accurate Building Roof Measurement. IEEE Trans. Instrum. Meas. 2014, 63, 1200–1214. [Google Scholar] [CrossRef]
- Simoniello, T.; Coluzzi, R.; Guariglia, A.; Imbrenda, V.; Lanfredi, M.; Samela, C. Automatic Filtering and Classification of Low-Density Airborne Laser Scanner Clouds in Shrubland Environments. Remote Sens. 2022, 14, 5127. [Google Scholar] [CrossRef]
- Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef]
- Becker, C.; Rosinskaya, E.; Häni, N.; D’Angelo, E.; Strecha, C. Classification of Aerial Photogrammetric 3D Point Clouds. Photogramm. Eng. Remote Sens. 2018, 84, 287–295. [Google Scholar]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef]
- Son, S.W.; Kim, D.W.; Sung, W.G.; Yu, J.J. Integrating UAV and TLS Approaches for Environmental Management: A Case Study of a Waste Stockpile Area. Remote Sens. 2020, 12, 1615. [Google Scholar] [CrossRef]
- Pathak, R.; Saini, A.; Wadhwa, A.; Sharma, H.; Sangwan, D. An object detection approach for detecting damages in heritage sites using 3-D point clouds and 2-D visual data. J. Cult. Herit. 2021, 48, 74–82. [Google Scholar] [CrossRef]
- Friedman, A.; Pizarro, O.; Williams, S.B.; Johnson-Roberson, M. Multi-Scale Measures of Rugosity, Slope and Aspect from Benthic Stereo Image Reconstructions. PLoS ONE 2012, 7, e50440. [Google Scholar] [CrossRef]
- Demantké, J.; Vallet, B.; Paparoditis, N. Streamed Vertical Rectangle Detection in Terrestrial Laser Scans for Facade Database Production. ISPRS Ann. Photohrammetry Remote Sens. Spat. Inf. Sci. 2012, I-3, 99–104. [Google Scholar] [CrossRef]
- Hackel, T.; Wegner, J.D.; Schindler, K. Fast Semantic Segmentation of 3D Point Clouds with Strongly Varying Density. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-3, 177–184. [Google Scholar] [CrossRef]
- Bui, A.; Apley, D. An exploratory analysis approach for understanding variation in stochastic textured surfaces. Comput. Stat. Data Anal. 2019, 137, 33–50. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J.; Vanden Branden, K. ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics 2005, 47, 64–79. [Google Scholar] [CrossRef]
- Nurunnabi, A.; Belton, D.; West, G. Robust statistical approaches for local planar surface fitting in 3D laser scanning data. ISPRS J. Photogramm. Remote Sens. 2014, 96, 106–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Q.; Wang, Z.; Yang, D. Quantitative evaluation for small surface damage based on iterative difference and triangulation of 3D point cloud. Meas. Sci. Technol. 2018, 29, 035601. [Google Scholar] [CrossRef]
- Mohammadi, M.; Wood, R.; Wittich, C. Non-Temporal Point Cloud Analysis for Surface Damage in Civil Structures. ISPRS Int. J. Geo-Inf. 2019, 8, 527. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Raguram, R.; Frahm, J.-M.; Pollefeys, M. A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. Lect. Notes Comput. Sci. 2008, 5303, 500–513. [Google Scholar]
- Mitropoulou, A.; Georgopoulos, A. An Automated Process to Detect Edges in Unorganized Point Clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W6, 99–106. [Google Scholar]
- Li, P.; Wang, M.; Fu, J.; Wang, Y. Plane Detection Based on an Improved RANSAC Algorithm. In Proceedings of the 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI), Taiyuan, China, 26–28 May 2023; pp. 211–215. [Google Scholar] [CrossRef]
- Sethian, J.A. Fast Marching Methods. SIAM Rev. 1999, 41, 199–235. [Google Scholar]
- Yatziv, L.; Bartesaghi, A.; Sapiro, G. O(N) implementation of the fast marching algorithm. J. Comput. Phys. 2006, 212, 393–399. [Google Scholar]
- Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality Based Scale Selection in 3D Lidar Point Clouds. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 3812, 97–102. [Google Scholar]
- Sun, L. DANIEL: A Fast and Robust Consensus Maximization Method for Point Cloud Registration with High Outlier Ratios. Inf. Sci. 2021, 614, 563–579. [Google Scholar]
- Zang, Y.; Li, B.; Xiao, X.; Zhu, J.; Meng, F. An Efficient Probabilistic Registration Based on Shape Descriptor for Heritage Field Inspection. ISPRS Int. J. Geo-Inf. 2020, 9, 759. [Google Scholar] [CrossRef]
- Mohammadi, M.E.; Wood, R.L. Identification of Key Geometrical Features for Automatic Structural Damage Detection from Point Clouds. Struct. Health Monit. 2017, 2017, 566–572. [Google Scholar] [CrossRef]
- Huang, A.; Xie, Q.; Wang, Z.; Lu, D.; Wei, M.; Wang, J. MODNet: Multi-offset point cloud denoising network customized for multi-scale patches. Comput. Graph. Forum 2022, 41, 109–119. [Google Scholar] [CrossRef]
- Bai, Y.; Durand, J.; Forbes, F.; Vincent, G. Semantic segmentation of sparse irregular point clouds for leaf/wood discrimination. arXiv 2023, arXiv:2305.16963. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Wang, J.; Gao, W. An improved FAST feature extraction based on RANSAC method of vision/SINS integrated navigation system in GNSS-denied environments. Adv. Space Res. 2017, 60, 2660–2671. [Google Scholar] [CrossRef]
- Canaz Sevgen, S.; Karsli, F. An improved RANSAC algorithm for extracting roof planes from airborne lidar data. Photogramm. Rec. 2020, 35, 40–57. [Google Scholar] [CrossRef]
- Tang, F.; Wang, J.; Wang, Z.; Xiao, M. Research on Ransac Filtering Optimization Method of Steel Structure Buildings Based on Morphological Features. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7673–7676. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. GESAC: Robust graph enhanced sample consensus for point cloud registration. ISPRS J. Photogramm. Remote Sens. 2020, 167, 363–374. [Google Scholar]
- Donato, E.; Giuffrida, D. Combined Methodologies for the Survey and Documentation of Historical Buildings: The Castle of Scalea (CS, Italy). Heritage 2019, 2, 2384–2397. [Google Scholar] [CrossRef]
- Zvietcovich, F.; Castañeda, B.; Perucchio, R. 3D solid model updating of complex ancient monumental structures based on local geometrical meshes. Digit. Appl. Archaeol. Cult. Herit. 2015, 2, 12–27. [Google Scholar]
- Kaur, N.; Tiwari, P.S.; Pande, H.; Agrawal, S. Utilizing Advance Texture Features for Rapid Damage Detection of Built Heritage Using High-Resolution Space Borne Data: A Case Study of UNESCO Heritage Site at Bagan, Myanmar. J. Indian Soc. Remote Sens. 2020, 48, 1627–1638. [Google Scholar]
- Sarmadi, H.; Yuen, K. Early damage detection by an innovative unsupervised learning method based on kernel null space and peak-over-threshold. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1150–1167. [Google Scholar]
- Milani, A.E.; Antonello, F.; Baraldi, P.; Zio, E. A coevolutionary optimization approach with deep sparse autoencoder for the extraction of equipment degradation indicators. In Proceedings of the 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM 2020, Venice, Italy, 1–5 November 2020. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Fatiguso, F. Advanced damage detection techniques in historical buildings using digital photogrammetry and 3D surface anlysis. J. Cult. Herit. 2019, 36, 51–62. [Google Scholar] [CrossRef]
- Pierdicca, R.; Gorgoglione, L.; Martuscelli, M.; Usmanov, S. Challenging architectures: An integrated and multipurpose survey for the complete mapping of the emir palace in Kogon (Uzbekistan). In Proceedings of the 29th CIPA Symposium ‘Documenting, Understanding, Preserving Cultural Heritage. Humanities and Digital Technologies for Shaping the Future, Florence, Italy, 25–30 June 2023; Copernicus GmbH: Göttingen, Germany, 2023; Volume XLVIII-M-2-2023, pp. 1225–1232. [Google Scholar]
- Shanoer, M.M.; Abed, F.M. Evaluate 3D Laser Point Clouds Registration for Cultural Heritage Documentation. Egypt. J. Remote Sens. Space Sci. 2018, 21, 295–304. [Google Scholar] [CrossRef]
Photos Acquisition and Processing | ||||||
---|---|---|---|---|---|---|
Camera model | DJI Mavic 2 Pro-Sensor LID 20c 1 CMOS (20 MP) | Canon EOS R-sensor objective RF 15–35 mm F2.8 L IS US | ||||
Altitudes | 10 m | 15 m | 20 m | 25 m | 30 m | Ground |
No. of raw photos | 227 | 211 | 176 | 154 | 140 | 108 |
No. of photos after pre-processing | 221 | 205 | 163 | 150 | 17 | 92 |
Camera tilt to the vertical (°) | 0°–45° | 0°–45° | 0° | 0° | 0° | Between 0° and 90° |
Overlapping (forward-side; %) | 85–85 | 80–80 | 75–75 | 75–75 | 70–70 | Between 60% and 80%; both forward and side |
GSD (cm/px) | 0.27 | 0.40 | 0.54 | 0.67 | 0.81 | Not applicable. |
Acquisition design | Double grid and circle | Circle | ||||
Image size (pix)/image bit depth (bi) | 5464 × 3070/16 | 6720 × 4480/16 | ||||
Ground control | ||||||
Sensor model | Stonex S700A with a controller Stonex S40 | |||||
Number of GCPs | 6 | |||||
Number of CPs | 3 | |||||
GCP dimensions (m) | 1 × 1 | |||||
GCP measurement method | GNSS-RTK base and rover | |||||
Min/Max GCP precision (XY, Z; mm) | ±8/±21; ±15/±35 | |||||
Coordinate reference systems | WGS84 |
Plane | Dip | Dip-Dir | DR | Cylinder | r | h | DS | Sphere | r | DS |
---|---|---|---|---|---|---|---|---|---|---|
P1 | 88° | 217° | NDS | C1 | 1.29 | 2.94 | NDS | S1 | 0.82 | DS |
P2 | 87° | 243° | NDS | C2 | 1.1 | 2.51 | NDS | S2 | 0.97 | NDS |
P3 | 43° | 45° | DS | C3 | 1.19 | 3.3 | NDS | |||
P4 | 10° | 52° | DS | C4 | 1.4 | 2.73 | NDS | |||
P5 | 5° | 25° | NDS | C5 | 1.68 | 2.91 | NDS | |||
P6 | 4° | 155° | NDS | C6 | 0.29 | 3.52 | NDS | |||
P7 | 77° | 95° | NDS | C7 | 0.66 | 3.22 | DS | |||
P8 | 41° | 258° | DS | C8 | 0.3 | 1.84 | DS |
NDS | Dip-Dip Dir. | No. F | RMS | DS | Dip-Dip Dir. | No. F | RMS |
---|---|---|---|---|---|---|---|
F1 | 15°–15° | 2 | 0.04; 0.001 | F3 | 55°–15° | 4 | 0.002; 0.006; 0.002; 0.001 |
F2 | 45°–15° | 3 | 0.002; 0.007; 0.002 | F4 | 105°–15° | 1 | 0.003 |
F5 | 165°–15° | 1 | 0.04 | F6 | 195°–15° | 1 | 0.001 |
F7 | 225°–15° | 4 | 0.001; 0.08; 0.008; 0.005 | F10 | 315°–15° | 1 | 0.002 |
F8 | 255°–15° | 2 | 0.008; 0.002 | F11 | 345°–15° | 4 | 0.005; 0.002; 0.003; 0.001 |
F9 | 285°–15° | 4 | 1.79; 1.60; 0.05; 0.02 | F13 | 75°–45° | 2 | 0.003; 0.004 |
F12 | 15°–45° | 9 | 0.001; 0.001; 0.08; 0.001; 0.001; 0.001; 4.20; 0.001; 0.001 | F14 | 165°–45° | 1 | 0.004 |
F20 | 15°–75° | 5 | 0.001; 0.07; 0.001; 0.001 | F15 | 195°–45° | 2 | 0.002; 0.001 |
F23 | 105°–75° | 1 | 0.07 | F16 | 225°–45° | 8 | 0.004; 0.002; 0.001; 0.001; 0.001; 0.001; 0.002; 0.005 |
F24 | 135°–75° | 1 | 0.09 | F17 | 255°–45° | 1 | 0.002 |
F25 | 165°–75° | 2 | 0.02; 0.001 | F18 | 285°–45° | 1 | 0.001 |
F27 | 225°–75° | 4 | 0.05; 0.02; 0.007; 0.002 | F19 | 345°–45° | 1 | 0.002 |
F28 | 255°–75° | 8 | 0.003; 0.009; 0.002; 0.01; 0.05; 0.05; 0.002; 0.005 | F21 | 45°–75° | 10 | 0.003; 0.005; 0.004; 0.01; 0.002; 0.004; 0.01; 0.004; 0.001; 0.002 |
F30 | 315°–75° | 1 | 0.03 | F22 | 75°–75° | 2 | 0.002; 0.009 |
F26 | 195°–75° | 10 | 0.001; 0.001; 5.1; 0.001; 0.001; 0.001; 0.001; 0.002; 0.003; 0.003 | ||||
F29 | 285°–75° | 1 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caciora, T.; Ilieș, A.; Herman, G.V.; Berdenov, Z.; Safarov, B.; Bilalov, B.; Ilieș, D.C.; Baias, Ș.; Hassan, T.H. Advanced Semi-Automatic Approach for Identifying Damaged Surfaces in Cultural Heritage Sites: Integrating UAVs, Photogrammetry, and 3D Data Analysis. Remote Sens. 2024, 16, 3061. https://doi.org/10.3390/rs16163061
Caciora T, Ilieș A, Herman GV, Berdenov Z, Safarov B, Bilalov B, Ilieș DC, Baias Ș, Hassan TH. Advanced Semi-Automatic Approach for Identifying Damaged Surfaces in Cultural Heritage Sites: Integrating UAVs, Photogrammetry, and 3D Data Analysis. Remote Sensing. 2024; 16(16):3061. https://doi.org/10.3390/rs16163061
Chicago/Turabian StyleCaciora, Tudor, Alexandru Ilieș, Grigore Vasile Herman, Zharas Berdenov, Bahodirhon Safarov, Bahadur Bilalov, Dorina Camelia Ilieș, Ștefan Baias, and Thowayeb H. Hassan. 2024. "Advanced Semi-Automatic Approach for Identifying Damaged Surfaces in Cultural Heritage Sites: Integrating UAVs, Photogrammetry, and 3D Data Analysis" Remote Sensing 16, no. 16: 3061. https://doi.org/10.3390/rs16163061
APA StyleCaciora, T., Ilieș, A., Herman, G. V., Berdenov, Z., Safarov, B., Bilalov, B., Ilieș, D. C., Baias, Ș., & Hassan, T. H. (2024). Advanced Semi-Automatic Approach for Identifying Damaged Surfaces in Cultural Heritage Sites: Integrating UAVs, Photogrammetry, and 3D Data Analysis. Remote Sensing, 16(16), 3061. https://doi.org/10.3390/rs16163061