Multiscale 3-D Stochastic Inversion of Frequency-Domain Airborne Electromagnetic Data
Abstract
:1. Introduction
2. Theory
2.1. Compressed Sensing
2.2. Multiscale Sparse Regularization
Algorithm 1. Shearlet-based CS inversion |
Set up: the starting model m0, the reference model mref, and the invert dataset dobs, the sampling matrix S. |
Set up: the initial λ = 100, the reduction factor k = 0.5, and the thresh = 1.0 |
while rms not reduce to thresh do |
1: Forward modeling for random under-sampling data by CS: |
2: Compute the gradient from reconstruction data by |
3: Compute Hessian matrix from reconstruction data by |
4: Calculate the coefficient updates by CG: |
, |
5: Update the model in the spatial domain: |
, |
6: Calculate data misfit rms. |
end while |
Output: final results m, rms. |
2.3. Preconditioned Stochastic Optimization
3. Numerical Experiments
4. Field Data Inversion
5. Conclusions
- (1)
- The sparse regularization inversion has a higher resolution than the conventional L2-norm inversion but it also takes a bit more time;
- (2)
- The sparse regularization with random CS data has a comparable inversion result with that based on full-batch data, while it reduces the time consumption by 30~40%;
- (3)
- The sparse regularization stochastic inversion is more beneficial for exploring multiple geological bodies with different sizes and large areas that have a large amount of data to be inverted.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, C.; Ren, X.; Liu, Y.; Cai, J. Exploration capability of airborne TEM systems for typical targets in the subsurface. Chin. J. Geophys. 2015, 58, 3370–3379. [Google Scholar] [CrossRef]
- Ren, X.; Lai, M.; Wang, L.; Yin, C.; Liu, Y.; Su, Y.; Zhang, B.; Ben, F.; Huang, W. A fast 3-D inversion for airborne EM data using pre-conditioned stochastic gradient descent. Geophys. J. Int. 2023, 234, 737–754. [Google Scholar] [CrossRef]
- Macnae, J.; Ren, X.; Munday, T. Stripping induced polarization effects from airborne electromagnetics to improve 3D conductivity inversion of a narrow palaeovalley. Geophysics 2020, 85, B161–B167. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, C.; Han, X.; Wang, L.; Liu, Y.; Ren, X.; Su, Y.; Baranwal, V.C. 3D Airborne Electromagnetic Data Inversion with Flight Altitude Correction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5910610. [Google Scholar] [CrossRef]
- Yang, D.; Oldenburg, D.W.; Haber, E. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings. Geophys. J. Int. 2014, 196, 1492–1507. [Google Scholar] [CrossRef]
- Liu, L.; Yang, B.; Zhang, Y.; Xu, Y.; Peng, Z.; Wang, F. Solving Electromagnetic Inverse Problem Using Adaptive Gradient Descent Algorithm. IEEE Geosci. Remote Sens. Mag. 2023, 61, 5902415. [Google Scholar] [CrossRef]
- Haber, E.; Schwarzbach, C. Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes. Inverse Probl. 2014, 30, 055011. [Google Scholar] [CrossRef]
- Park, C.; Lee, B. Online compressive covariance sensing. Signal Process. 2019, 162, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Xu, W.; Zhang, X.; Lin, J. A survey on one-bit compressed sensing: Theory and applications. Front. Comput. Sci. 2018, 12, 217–230. [Google Scholar] [CrossRef]
- Shiraz, A.; Khodadad, D.; Nordebo, S.; Yerworth, R.; Frerichs, I.; Van Kaam, A.; Kallio, M.; Papadouri, T.; Bayford, R.; De-mosthenous, A. Compressive sensing in electrical impedance tomography for breathing monitoring. Physiol. Meas. 2019, 40, 034010. [Google Scholar] [CrossRef] [PubMed]
- Antonini, M.; Barlaud, M.; Mathieu, P.; Daubechies, I. Image coding using wavelet transform. IEEE Trans. Image Process. 1992, 1, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Kutyniok, G.; Lim, W.-Q.; Reisenhofer, R. Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets. ACM Trans. Math. Softw. 2016, 42, 1–42. [Google Scholar] [CrossRef]
- Qi, B.; Jin, L.; Li, G.; Zhang, Y.; Li, Q.; Bi, G.; Wang, W. Infrared and visible image fusion based on co-occurrence analysis shearlet transform. Remote Sens. 2022, 14, 283. [Google Scholar] [CrossRef]
- Liu, Y.; Farquharson, C.G.; Yin, C.; Baranwal, V.C. Wavelet-based 3-D inversion for frequency-domain airborne EM data. Geophys. J. Int. 2018, 213, 1–15. [Google Scholar] [CrossRef]
- Deleersnyder, W.; Maveau, B.; Hermans, T.; Dudal, D. Inversion of electromagnetic induction data using a novel wavelet-based and scale-dependent regularization term. Geophys. J. Int. 2021, 226, 1715–1729. [Google Scholar] [CrossRef]
- Candes, E.; Demanet, L.; Donoho, D.; Ying, L. Fast discrete curvelet transforms. Multiscale Model. Simul. 2006, 5, 861–899. [Google Scholar] [CrossRef]
- Wang, N.; Yin, C.; Gao, L.; Su, Y.; Liu, Y.; Xiong, B. Airborne EM denoising based on curvelet transform. Chin. J. Geophys. 2020, 63, 4592–4603. [Google Scholar] [CrossRef]
- Gao, L.; Yin, C.; Wang, N.; Liu, Y.; Su, Y.; Xiong, B. Leveling of airborne electromagnetic data based on curvelet transform. Chin. J. Geophys. 2021, 64, 1785–1796. [Google Scholar] [CrossRef]
- Lim, W.-Q. Nonseparable shearlet transform. IEEE Trans. Image Process. 2013, 22, 2056–2065. [Google Scholar] [CrossRef]
- Su, Y.; Yin, C.; Liu, Y.; Ren, X.; Zhang, B.; Qiu, C.; Xiong, B.; Baranwal, V.C. Sparse-promoting 3-D airborne electromagnetic inversion based on shearlet transform. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5901713. [Google Scholar] [CrossRef]
- Cox, L.H.; Wilson, G.A.; Zhdanov, M.S. 3D inversion of airborne electromagnetic data using a moving footprint. Explor. Geophys. 2010, 41, 250–259. [Google Scholar] [CrossRef]
- Oldenburg, D.W.; Haber, E.; Shekhtman, R. Three dimensional inversion of multisource time domain electromagnetic data. Geophysics 2013, 78, E47–E57. [Google Scholar] [CrossRef]
- Ren, X.; Yin, C.; Macnae, J.; Liu, Y.; Zhang, B. 3D time-domain airborne electromagnetic inversion based on secondary field finite-volume method. Geophysics 2018, 83, E219–E228. [Google Scholar] [CrossRef]
- Ren, H.; Lei, D.; Wang, Z.; Fu, C. A Mesh Mapping-Based Cooperative Inversion Strategy for Airborne Transient Electro-magnetic and Magnetic Methods. Remote Sens. 2022, 15, 125. [Google Scholar] [CrossRef]
- Godard, D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 1980, 28, 1867–1875. [Google Scholar] [CrossRef]
- Widrow, B.; Stearns, S.D. Adaptive Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Schraudolph, N.N.; Yu, J.; Günter, S. A stochastic quasi-Newton method for online convex optimization. In Proceedings of the Artificial Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007; pp. 436–443. [Google Scholar]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar] [CrossRef]
- Li, X.-L. Preconditioned stochastic gradient descent. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
- Netrapalli, P. Stochastic gradient descent and its variants in machine learning. J. Indian. Inst. Sci. 2019, 99, 201–213. [Google Scholar] [CrossRef]
- Amiri, M.M.; Gündüz, D. Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air. IEEE Trans. Signal Process. 2020, 68, 2155–2169. [Google Scholar] [CrossRef]
- Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 116. [Google Scholar] [CrossRef]
- Bottou, L.; Bousquet, O. The tradeoffs of large scale learning. Adv. Neural Inf. Process. Syst. 2008, 20, 167–168. [Google Scholar]
- Bordes, A.; Bottou, L.; Gallinari, P. SGD-QN: Careful quasi-Newton stochastic gradient descent. J. Mach. Learn. Res. 2009, 10, 1737–1754. [Google Scholar] [CrossRef]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010: 19th International Conference on Computational Statistics, Paris, France, 22–27 August 2010; Keynote, Invited and Contributed Papers. pp. 177–186. [Google Scholar] [CrossRef]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of momentum and initialization in deep learning. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 404–439. [Google Scholar]
- Ma, A.; Needell, D. Stochastic gradient descent for linear systems with missing data. arXiv 2017, arXiv:1702.07098. [Google Scholar] [CrossRef]
- Fichman, M.; Cummings, J.N. Multiple imputation for missing data: Making the most of what you know. Organ. Res. Methods 2003, 6, 282–308. [Google Scholar] [CrossRef]
- Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.-L. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. [Google Scholar] [CrossRef]
- Herrmann, F.J.; Hennenfent, G. Non-parametric seismic data recovery with curvelet frames. Geophys. J. Int. 2008, 173, 233–248. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.-H.; Wu, X.-M. Seismic data reconstruction based on CS and Fourier theory. J. Appl. Geophy 2013, 10, 170–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, J.; Zhang, G. Compression of remotely sensed astronomical image using wavelet-based compressed sensing in deep space exploration. Remote Sens. 2021, 13, 288. [Google Scholar] [CrossRef]
- Herrmann, F.J. Randomized sampling and sparsity: Getting more information from fewer samples. Geophysics 2010, 75, WB173–WB187. [Google Scholar] [CrossRef]
- Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 1997, 45, 600–616. [Google Scholar] [CrossRef]
- Abma, R.; Kabir, N. 3D interpolation of irregular data with a POCS algorithm. Geophysics 2006, 71, E91–E97. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Yin, C.; Ren, X.; Cao, J.; Su, Y.; Xiong, B. Fast 3D time-domain airborne EM forward modeling using random under-sampling. J. Appl. Geophys. 2021, 191, 104357. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Simons, F.J.; Loris, I.; Nolet, G.; Daubechies, I.C.; Voronin, S.; Judd, J.; Vetter, P.A.; Charléty, J.; Vonesch, C. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophys. J. Int. 2011, 187, 969–988. [Google Scholar] [CrossRef]
- Ekblom, H. The L1-estimate as limiting case of an Lp-or Huber-estimate. In Statistical Data Analysis Based on the L1-Norm and Related Methods; Doge, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 109–116. [Google Scholar]
- Farquharson, C.G. Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 2008, 73, K1–K9. [Google Scholar] [CrossRef]
- Ansari, S.; Farquharson, C.; MacLachlan, S. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems. Geophys. J. Int. 2017, 210, 105–129. [Google Scholar] [CrossRef]
- Tang, G.; Shahidi, R.; Herrmann, F.J.; Ma, J. Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery. In Proceedings of the SEG International Exposition and Annual Meeting, San Antonio, TX, USA, 15–20 September 2019; p. SEG–2009-0191. [Google Scholar] [CrossRef]
- Reite, A.J.; Sveian, H.; Erichsen, E. Trondheim fra istid til nåtid: Landskapshistorie og løsmasser; Norges Geologiske Undersøkelse: Trondheim, Norway, 1999; Volume 5. [Google Scholar]
- Solberg, I.-L.; Long, M.; Baranwal, V.C.; Gylland, A.S.; Rønning, J.S. Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Eng. Geol. 2016, 208, 214–230. [Google Scholar] [CrossRef]
- Baranwal, V.; Dalsegg, E.; Tønnesen, J.; Rønning, J.; Solberg, I.; Rodionov, A.; Dretvik, H. Mapping of Marine Clay Layers Using Airborne EM and Ground Geophysical Surveys at Byneset, Trondheim Municipality; Geological Survey of Norway (NGU) Report 2015.006; Geological Survey of Norway: Trondheim, Norway, 2015. [Google Scholar]
Inversion Methods | L2-Norm with Full Data | L2-Norm with 50% Sampling | Shearlet-Based with Full Data | Shearlet-Based with 50% Sampling |
---|---|---|---|---|
Iterations | 11 | 12 | 14 | 15 |
Data misfit (rms) | 1.06 | 1.22 | 1.01 | 1.23 |
Time (h) | 8.7 | 4.65 | 15.3 | 9.22 |
Inversion Methods | L2-Norm with Full Data | L2-Norm with 50% Sampling | Shearlet-Based with Full Data | Shearlet-Based with 50% Sampling |
---|---|---|---|---|
Iterations | 12 | 11 | 10 | 10 |
Data misfit (rms) | 1.47 | 1.38 | 1.72 | 2.23 |
Time (h) | 38.4 | 25.2 | 51.1 | 34.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Ren, X.; Yin, C.; Wang, L.; Liu, Y.; Zhang, B.; Wang, L. Multiscale 3-D Stochastic Inversion of Frequency-Domain Airborne Electromagnetic Data. Remote Sens. 2024, 16, 3070. https://doi.org/10.3390/rs16163070
Su Y, Ren X, Yin C, Wang L, Liu Y, Zhang B, Wang L. Multiscale 3-D Stochastic Inversion of Frequency-Domain Airborne Electromagnetic Data. Remote Sensing. 2024; 16(16):3070. https://doi.org/10.3390/rs16163070
Chicago/Turabian StyleSu, Yang, Xiuyan Ren, Changchun Yin, Libao Wang, Yunhe Liu, Bo Zhang, and Luyuan Wang. 2024. "Multiscale 3-D Stochastic Inversion of Frequency-Domain Airborne Electromagnetic Data" Remote Sensing 16, no. 16: 3070. https://doi.org/10.3390/rs16163070
APA StyleSu, Y., Ren, X., Yin, C., Wang, L., Liu, Y., Zhang, B., & Wang, L. (2024). Multiscale 3-D Stochastic Inversion of Frequency-Domain Airborne Electromagnetic Data. Remote Sensing, 16(16), 3070. https://doi.org/10.3390/rs16163070