Direct and Remote Sensing Monitoring of Plant Salinity Stress in a Coastal Back-Barrier Environment: Mediterranean Pine Forest Stress and Mortality as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel-2 and Meteorological Data Collection
2.3. Soil Sampling and Analysis
2.4. Groundwater and Vadose Zone Monitoring
2.5. Wet Deposition Sampling and Flux Calculation
2.6. Data Analysis
3. Results
3.1. Sentinel-2 Monitoring
3.2. Field Monitoring
3.3. Marine Spray Wet Deposition Flux
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Der Maarel, E. Some Remarks on the Functions of European Coastal Ecosystems. Phytocoenologia 2003, 33, 187–202. [Google Scholar] [CrossRef]
- Sperandii, M.G.; Bazzichetto, M.; Gatti, F.; Acosta, A.T.R. Back into the Past: Resurveying Random Plots to Track Community Changes in Italian Coastal Dunes. Ecol. Indic. 2019, 96, 572–578. [Google Scholar] [CrossRef]
- Carranza, M.L.; Acosta, A.T.R.; Stanisci, A.; Pirone, G.; Ciaschetti, G. Ecosystem Classification for EU Habitat Distribution Assessment in Sandy Coastal Environments: An Application in Central Italy. Environ. Monit. Assess. 2008, 140, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Jolicoeur, S.; O’Carroll, S. Sandy Barriers, Climate Change and Long-Term Planning of Strategic Coastal Infrastructures, Îles-de-La-Madeleine, Gulf of St. Lawrence (Québec, Canada). Landsc. Urban Plan. 2007, 81, 287–298. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Zhao, S.; Li, H.; Sun, J. Saltmarshes Response to Human Activities on a Prograding Coast Revealed by a Dual-Scale Time-Series Strategy. Estuar. Coast. 2017, 40, 522–539. [Google Scholar] [CrossRef]
- Faranda, D.; Pascale, S.; Bulut, B. Persistent Anticyclonic Conditions and Climate Change Exacerbated the Exceptional 2022 European-Mediterranean Drought. Environ. Res. Lett. 2023, 18, 034030. [Google Scholar] [CrossRef]
- Jones, M.L.M.; Sowerby, A.; Williams, D.L.; Jones, R.E. Factors Controlling Soil Development in Sand Dunes: Evidence from a Coastal Dune Soil Chronosequence. Plant Soil 2008, 307, 219–234. [Google Scholar] [CrossRef]
- Bazzichetto, M.; Malavasi, M.; Acosta, A.T.R.; Carranza, M.L. How Does Dune Morphology Shape Coastal EC Habitats Occurrence? A Remote Sensing Approach Using Airborne LiDAR on the Mediterranean Coast. Ecol. Indic. 2016, 71, 618–626. [Google Scholar] [CrossRef]
- Fitzgerald, J.W. Marine Aerosols: A Review. Atmos. Environ. 1991, 25, 533–545. [Google Scholar] [CrossRef]
- Cerrato, M.; Ribas-Serra, A.; Cortés-Fernández, I.; Cardona Ametller, C.; Mir-Rosselló, P.M.; Douthe, C.; Flexas, J.; Gil, L.; Sureda, A. Effect of Seawater Salinity Stress on Sporobolus Pungens (Schreb.) Kunth, a Halophytic Grass of the Mediterranean Embryonic Dunes. Plant Growth Regul. 2022, 98, 191–204. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N. The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Alessandrino, L.; Gaiolini, M.; Cellone, F.A.; Colombani, N.; Mastrocicco, M.; Cosma, M.; Da Lio, C.; Donnici, S.; Tosi, L. Salinity Origin in the Coastal Aquifer of the Southern Venice Lowland. Sci. Total Environ. 2023, 905, 167058. [Google Scholar] [CrossRef]
- Du, J.; Hesp, P.A. Salt Spray Distribution and Its Impact on Vegetation Zonation on Coastal Dunes: A Review. Estuar. Coasts 2020, 43, 1885–1907. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Filella, I.; Estiarte, M.; Llusià, J.; Ogaya, R.; Carnicer, J.; Bartrons, M.; Rivas-Ubach, A.; Grau, O.; et al. Impacts of Global Change on Mediterranean Forests and Their Services. Forests 2017, 8, 463. [Google Scholar] [CrossRef]
- Conte, A.; Zappitelli, I.; Fusaro, L.; Alivernini, A.; Moretti, V.; Sorgi, T.; Recanatesi, F.; Fares, S. Significant Loss of Ecosystem Services by Environmental Changes in the Mediterranean Coastal Area. Forests 2022, 13, 689. [Google Scholar] [CrossRef]
- EEC Council Directive 92/43/EEC; The Conservation of Natural Habitats and of Wild Fauna and Flora. 1992.
- Torres, I.; Moreno, J.M.; Morales-Molino, C.; Arianoutsou, M. Ecosystem Services Provided by Pine Forests. In Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin. Managing Forest Ecosystems; Ne’eman, G., Osem, Y., Eds.; Springer: Cham, Switzerland, 2021; Volume 38, pp. 617–629. [Google Scholar]
- Quinto, L.; Navarro-Cerrillo, R.M.; Palacios-Rodriguez, G.; Ruiz-Gómez, F.; Duque-Lazo, J. The Current Situation and Future Perspectives of Quercus Ilex and Pinus Halepensis Afforestation on Agricultural Land in Spain under Climate Change Scenarios. New For. 2021, 52, 145–166. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Lawley, V.; Lewis, M.; Clarke, K.; Ostendorf, B. Site-Based and Remote Sensing Methods for Monitoring Indi-cators of Vegetation Condition: An Australian Review. Ecol. Indic. 2016, 60, 1273–1283. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote Sensing Imagery in Vegetation Mapping: A Review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Marzialetti, F.; Giulio, S.; Malavasi, M.; Sperandii, M.G.; Acosta, A.T.R.; Carranza, M.L. Capturing Coastal Dune Natural Vegetation Types Using a Phenology-Based Mapping Approach: The Potential of Sentinel-2. Remote Sens. 2019, 11, 1506. [Google Scholar] [CrossRef]
- Strashok, O.; Ziemiańska, M.; Strashok, V. Evaluation and Correlation of Normalized Vegetation Index and Moisture Index in Kyiv (2017–2021). J. Ecol. Eng. 2022, 23, 212–218. [Google Scholar] [CrossRef]
- Dutkiewicz, A.; Lewis, M.; Ostendorf, B. Evaluation and Comparison of Hyperspectral Imagery for Mapping Surface Symptoms of Dryland Salinity. Int. J. Remote Sens. 2009, 30, 693–719. [Google Scholar] [CrossRef]
- Ramsey, E.; Werle, D.; Suzuoki, Y.; Rangoonwala, A.; Lu, Z. Limitations and Potential of Satellite Imagery to Monitor Environmental Response to Coastal Flooding. J. Coast. Res. 2012, 280, 457–476. [Google Scholar] [CrossRef]
- Cannone, N.; Guglielmin, M.; Ponti, S. Suitability and Limitations of Ground-Based Imagery and Thermography for Long-Term Monitoring of Vegetation Changes in Victoria Land (Continental Antarctica). Ecol. Indic. 2023, 156, 111080. [Google Scholar] [CrossRef]
- Lassalle, G. Monitoring Natural and Anthropogenic Plant Stressors by Hyperspectral Remote Sensing: Recommendations and Guidelines Based on a Meta-Review. Sci. Total Environ. 2021, 788, 147758. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Q.; Zhao, X.-Z.; Liang, C.-Y.; Yang, Z.-X.; Liu, Y.; Qi, D.P. The Monitoring of Plant Physiology and Ecology: From Materials to Flexible Devices. Chin. J. Anal. Chem. 2023, 51, 100211. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Milia, A.; Torrente, M.M. Late-Quaternary Volcanism and Transtensional Tectonics in the Bay of Naples, Campanian Continental Margin, Italy. Miner. Pet. 2003, 79, 49–65. [Google Scholar] [CrossRef]
- Sacchi, M.; Molisso, F.; Pacifico, A.; Vigliotti, M.; Sabbarese, C.; Ruberti, D. Late-Holocene to Recent Evolution of Lake Patria, South Italy: An Example of a Coastal Lagoon within a Mediterranean Delta System. Glob. Planet. Chang. 2014, 117, 9–27. [Google Scholar] [CrossRef]
- Amorosi, A.; Pacifico, A.; Rossi, V.; Ruberti, D. Late Quaternary Incision and Deposition in an Active Volcanic Setting: The Volturno Valley Fill, Southern Italy. Sediment. Geol. 2012, 282, 307–320. [Google Scholar] [CrossRef]
- Ruberti, D.; Vigliotti, M. Land Use and Landscape Pattern Changes Driven by Land Reclamation in a Coastal Area: The Case of Volturno Delta Plain, Campania Region, Southern Italy. Environ. Earth Sci. 2017, 76, 694. [Google Scholar] [CrossRef]
- Rispo, V.; Digillo, A.; Calandrelli, M.M. Tutelare Il Capitale Naturale Con Il Remote Sensing. In Proceedings of the Atti del Convegno “Urbanistica Informazioni”; INU: Napoli, Italy, 2022; pp. 400–402. [Google Scholar]
- Busico, G.; Giuditta, E.; Kazakis, N.; Colombani, N. A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role. Sustainability 2019, 11, 7166. [Google Scholar] [CrossRef]
- Calandrelli, M.M.; Calandrelli, R. The District Tourism Lake of Castel Volturno: An Example of Territorial Requalification of Abandoned Quarries. In Engineering Geology for Society and Territory: Urban Geology, Sustainable Planning and Landscape Exploitation; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P.T., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 5, pp. 1315–1319. [Google Scholar]
- Nicoletti, R.; De Masi, L.; Migliozzi, A.; Calandrelli, M.M. Analysis of Dieback in a Coastal Pinewood in Campania, Southern Italy, through High-Resolution. Remote Sens. Plants 2024, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Browser. Available online: https://Browser.Dataspace.Copernicus.Eu/ (accessed on 1 May 2024).
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Centro Funzionale Multirischi Della Protezione Civile Regione Campania. Available online: https://Centrofunzionale.Regione.Campania.It/ (accessed on 1 May 2024).
- Moderate Resolution Imaging Spectroradiometer (MODIS). Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1939/0000/Moderate-Resolution-Imaging-Spectroradiometer-MODIS/10.1117/12.152835.short#_=_ (accessed on 1 May 2024).
- Schuwirth, N.; Hofmann, T. Comparability of and Alternatives to Leaching Tests for the Assessment of the Emission of Inorganic Soil Contamination. J. Soil Sediments 2006, 6, 102–112. [Google Scholar] [CrossRef]
- Alessandrino, L.; Colombani, N.; Aschonitis, V.G.; Mastrocicco, M. Nitrate and Dissolved Organic Carbon Release in Sandy Soils at Different Liquid/Solid Ratios Amended with Graphene and Classical Soil Improvers. Appl. Sci. 2022, 12, 6220. [Google Scholar] [CrossRef]
- Jiao, J.J.; Wang, Y.; Cherry, J.A.; Wang, X.; Zhi, B.; Du, H.; Wen, D. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer-Aquitard System in the Pearl River Delta, China. Environ. Sci. Technol. 2010, 44, 7470–7475. [Google Scholar] [CrossRef]
- Hilhorst, M.A. A Pore Water Conductivity Sensor. Soil Sci. Soc. Am. J. 2000, 64, 1922–1925. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA): Washington, DC, USA, 2017. [Google Scholar]
- Staelens, J.; De Schrijver, A.; Van Avermaet, P.; Genouw, G.; Verhoest, N. A Comparison of Bulk and Wet-Only Deposition at Two Adjacent Sites in Melle (Belgium). Atm. Environ. 2005, 39, 7–15. [Google Scholar] [CrossRef]
- Amodio, M.; Catino, S.; Dambruoso, P.R.; de Gennaro, G.; Di Gilio, A.; Giungato, P.; Laiola, E.; Marzocca, A.; Mazzone, A.; Sardaro, A.; et al. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature. Adv. Meteorol. 2014, 2014, 161730. [Google Scholar] [CrossRef]
- International Standard ISO 9223:2012 (E); Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. ISO: Geneva, Switzerland, 2012.
- Cochrane, A. Salt and Waterlogging Stress Impacts on Seed Germination and Early Seedling Growth of Se-lected Endemic Plant Species from Western Australia. Plant Ecol. 2018, 219, 633–647. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Loustau, D.; Delzon, S. Temperature Response of Parameters of a Biochemically Based Model of Photosynthesis. I. Seasonal Changes in Mature Maritime Pine (Pinus pinaster Ait.). Plant Cell Environ. 2002, 25, 1155–1165. [Google Scholar] [CrossRef]
- Sharapov, E.; Demakov, Y.; Korolev, A. Effect of Plantation Density on Some Physical and Technological Parameters of Scots Pine (Pinus sylvestris L.). Forests 2024, 15, 233. [Google Scholar] [CrossRef]
- Garonna, A.P.; Scarpato, S.; Vicinanza, F.; Espinosa, B. First Report of Toumeyella parvicornis (Cockerell) in Europe (Hemiptera: Coccidae). Zootaxa 2015, 3949, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, F.; Kabala, J.P.; Altieri, S.; Faugno, S.; Battipaglia, G. Impact of Toumeyella Parvicornis Outbreak in Pinus pinea L. Forest of Southern Italy: First Detection Using a Dendrochronological, Isotopic and Remote Sensing Analysis. For. Ecol. Manag. 2024, 566, 122086. [Google Scholar] [CrossRef]
- Rubio-Cuadrado, Á.; López, R.; Rodríguez-Calcerrada, J.; Gil, L. Stress and Tree Mortality in Mediterranean Pine Forests: Anthropogenic Influences. In Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin. Managing Forest Ecosystems; Ne’eman, G., Osem, Y., Eds.; Springer: Cham, Switzerland, 2021; Volume 38, pp. 141–181. [Google Scholar]
- Kost, O.; Stoll, H. Marine Aerosols in Coastal Areas and Their Impact on Cave Drip Water—A Monitoring Study from Northern Spain. Atmos. Environ. 2023, 302, 119730. [Google Scholar] [CrossRef]
- Thorslund, J.; Bierkens, M.F.P.; Oude Essink, G.H.P.; Sutanudjaja, E.H.; van Vliet, M.T.H. Common Irrigation Drivers of Freshwater Salinisation in River Basins Worldwide. Nat. Commun. 2021, 12, 4232. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Li, Y.; Deo, R.C.; Liu, W.; Zhu, M.; Zheng, X.; Liu, R. An Interplay of Soil Salinization and Groundwater Degradation Threatening Coexistence of Oasis-Desert Ecosystems. Sci. Total Environ. 2022, 806, 150599. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and Environmental Issues in Sandy Soils. Earth-Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and Crop Yield. Plant Biol. J. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Croser, C.; Renault, S.; Franklin, J.; Zwiazek, J. The Effect of Salinity on the Emergence and Seedling Growth of Picea Mariana, Picea Glauca, and Pinus Banksiana. Environ. Poll. 2001, 115, 9–16. [Google Scholar] [CrossRef]
- Tang, Y.; Meng, Q.; Ren, P. Spatial Distribution and Concentrations of Salt Fogs in a Coastal Urban Environ-ment: A Case Study in Zhuhai City. Build. Environ. 2023, 234, 110156. [Google Scholar] [CrossRef]
- Ogura, A.; Yura, H. Effects of Sandblasting and Salt Spray on Inland Plants Transplanted to Coastal Sand Dunes. Ecol. Res. 2008, 23, 107–112. [Google Scholar] [CrossRef]
- Raddi, S.; Cherubini, P.; Lauteri, M.; Magnani, F. The Impact of Sea Erosion on Coastal Pinus Pinea Stands: A Diachronic Analysis Combining Tree-Rings and Ecological Markers. For. Ecol. Manag. 2009, 257, 773–781. [Google Scholar] [CrossRef]
- Romano, G.; Ricci, G.F.; Leronni, V.; Venerito, P.; Gentile, F. Soil Bioengineering Techniques for Mediterranean Coastal Dune Restoration Using Autochthonous Vegetation Species. J. Coast. Conserv. 2022, 26, 71. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) Mediterranean Region. Climate Change 2022—Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2023; pp. 2233–2272. [Google Scholar]
Parameter | Sample ID | Standard for Analysis | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Total N (%) | 0.10 | 0.10 | 0.07 | 0.06 | 0.03 | 0.04 | ISO 11261:1995 |
Organic Matter (%) | 2.38 | 2.38 | 1.48 | 1.22 | 0.32 | 0.90 | ISO 23400:2021 |
P (ppm) | 11.2 | 15.1 | 17.1 | 20.9 | 17.6 | 19.9 | ISO 11263:1994 |
K (ppm) | 316 | 292 | 517.00 | 509.00 | 326.00 | 598 | ISO 10693:1995 |
P2O5 (ppm) | 25.8 | 34.7 | 39.3 | 48.1 | 40.5 | 45.8 | ISO 11263:1994 |
K2O (ppm) | 382 | 353 | 625 | 615 | 394 | 723 | ISO 10693:1995 |
CaCO3 (%) | 15.0 | 13.0 | 19.0 | 17.0 | 23.0 | 14.0 | ISO 10693:1995 |
pH | 7.78 | 7.69 | 7.74 | 7.76 | 7.86 | 7.79 | ISO 10390:2021 |
Coarse Sand (%) | 56.4 | 57.1 | 81.6 | 46.7 | 77.6 | 53.2 | USDA soil taxonomy |
Fine Sand (%) | 38.1 | 36.1 | 11.9 | 47.3 | 20.4 | 41.8 | USDA soil taxonomy |
Silt (%) | 2.0 | 1.5 | 3.0 | 2.5 | 0.5 | 2.0 | USDA soil taxonomy |
Clay (%) | 3.5 | 5.0 | 3.5 | 3.5 | 1.5 | 3.0 | USDA soil taxonomy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandrino, L.; Giuditta, E.; Faugno, S.; Colombani, N.; Mastrocicco, M. Direct and Remote Sensing Monitoring of Plant Salinity Stress in a Coastal Back-Barrier Environment: Mediterranean Pine Forest Stress and Mortality as a Case Study. Remote Sens. 2024, 16, 3150. https://doi.org/10.3390/rs16173150
Alessandrino L, Giuditta E, Faugno S, Colombani N, Mastrocicco M. Direct and Remote Sensing Monitoring of Plant Salinity Stress in a Coastal Back-Barrier Environment: Mediterranean Pine Forest Stress and Mortality as a Case Study. Remote Sensing. 2024; 16(17):3150. https://doi.org/10.3390/rs16173150
Chicago/Turabian StyleAlessandrino, Luigi, Elisabetta Giuditta, Salvatore Faugno, Nicolò Colombani, and Micòl Mastrocicco. 2024. "Direct and Remote Sensing Monitoring of Plant Salinity Stress in a Coastal Back-Barrier Environment: Mediterranean Pine Forest Stress and Mortality as a Case Study" Remote Sensing 16, no. 17: 3150. https://doi.org/10.3390/rs16173150
APA StyleAlessandrino, L., Giuditta, E., Faugno, S., Colombani, N., & Mastrocicco, M. (2024). Direct and Remote Sensing Monitoring of Plant Salinity Stress in a Coastal Back-Barrier Environment: Mediterranean Pine Forest Stress and Mortality as a Case Study. Remote Sensing, 16(17), 3150. https://doi.org/10.3390/rs16173150