Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lidar System
2.2. Methods
2.2.1. Data Processing Methods
2.2.2. Mixed-Aerosol Analysis Method
2.3. Auxiliary Data
3. Results
3.1. Overview
3.2. Desert Dust Case
3.3. Mining Dust Case
3.4. Pollution Aerosol Case
4. Discussion
4.1. Mixture of Mining Dust and Desert Dust
4.2. Mixture of Dust and Pollution Aerosols
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreae, M.O.; Crutzen, P.J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 1997, 276, 1052–1058. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Geng, F.; Zhang, H.; Cai, C.; Xu, T.; Ma, X.; Li, H. Vertical distribution of optical and micro-physical properties of ambient aerosols during dry haze periods in Shanghai. Atmos. Environ. 2012, 50, 50–59. [Google Scholar] [CrossRef]
- Singh, U.N.; Asai, K.; Liu, Q.; Ma, X.; Jin, H.; Chen, Y.; Yu, Y.; Zhang, H.; Cai, C.; Wang, Y.; et al. Seasonal variation of aerosol vertical distributions in the middle and lower troposphere in Beijing and surrounding area during haze periods based on CALIPSO observation. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XIV, Beijing, China, 13–16 October 2014. [Google Scholar]
- Wang, Q.; Li, Q.; Wang, Z.; Chen, H.; Mao, H.; Chen, C. A Quantitatively Operational Judging Method for the Process of Large Regional Heavy Haze Event Based on Satellite Remote Sensing and Numerical Simulations. Atmosphere 2017, 8, 222. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Liu, B.; Liu, H.; Cui, L. Hyperspectral Data Haze Monitoring Based on Deep Residual Network. Acta Opt. Sin. 2017, 37, 314–324. [Google Scholar]
- Yang, L.; Yang, H.; Chen, J.; Lin, C. Haze distribution, early warning and prediction method in Shenzhen. Acta Sci. Circumstantiae 2012, 32, 3065–3072. [Google Scholar]
- Ge, W.; Chen, L.-F.; Si, Y.-D.; Ge, Q.; Fan, M.; Li, S.-s. Haze Spectral Analysis and Detection Algorithm Using Satellite Remote Sensing Data. Spectrosc. Spectr. Anal. 2016, 36, 3817–3824. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, S.; Zhang, G.; Liu, Y.; Zhou, Y. Progress in Haze Monitoring by Remote Sensing Technology. Remote Sens. Technol. Appl. 2019, 34, 12–20. [Google Scholar]
- Hara, Y.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Pan, X.; Kobayashi, H.; Osada, K.; Uno, I. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie–Raman lidar system. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 20–27. [Google Scholar] [CrossRef]
- Helin, A.; Virkkula, A.; Backman, J.; Pirjola, L.; Sippula, O.; Aakko-Saksa, P.; Väätäinen, S.; Mylläri, F.; Järvinen, A.; Bloss, M.; et al. Variation of Absorption Ångström Exponent in Aerosols From Different Emission Sources. J. Geophys. Res. Atmos. 2021, 126, e2020JD034094. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.; Yao, Z.; Zhang, T.; Fan, G.; Cao, X.; Ji, C. The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing. Remote Sens. 2023, 15, 3494. [Google Scholar] [CrossRef]
- Papagiannopoulos, N.; Mona, L.; Amodeo, A.; D’Amico, G.; Gumà Claramunt, P.; Pappalardo, G.; Alados-Arboledas, L.; Guerrero-Rascado, J.L.; Amiridis, V.; Kokkalis, P.; et al. An automatic observation-based aerosol typing method for EARLINET. Atmos. Chem. Phys. 2018, 18, 15879–15901. [Google Scholar] [CrossRef]
- Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys. 2013, 13, 2487–2505. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Vaughan, M.A.; Omar, A.H.; Rogers, R.R.; Hostetler, C.A.; Hair, J.W. Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask. Atmos. Meas. Tech. 2013, 6, 1397–1412. [Google Scholar] [CrossRef]
- He, Y.; Xu, X.; Gu, Z.; Chen, X.; Li, Y.; Fan, S. Vertical distribution characteristics of aerosol particles over the Guanzhong Plain. Atmos. Environ. 2021, 255, 118444. [Google Scholar] [CrossRef]
- Li, H.; Duan, F.; Ma, Y.; He, K.; Zhu, L.; Ma, T.; Ye, S.; Yang, S.; Huang, T.; Kimoto, T. Case study of spring haze in Beijing: Characteristics, formation processes, secondary transition, and regional transportation. Environ. Pollut. 2018, 242, 544–554. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Ma, P.; Tao, J.; Jia, S. A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations. Atmos. Environ. 2014, 82, 183–192. [Google Scholar] [CrossRef]
- Shen, R.; Schaefer, K.; Schnelle-Kreis, J.; Shao, L.; Norra, S.; Kramar, U.; Michalke, B.; Abbaszade, G.; Streibel, T.; Zimmermann, R.; et al. Seasonal variability and source distribution of haze particles from a continuous one-year study in Beijing. Atmos. Pollut. Res. 2018, 9, 627–633. [Google Scholar] [CrossRef]
- Zhao, X.; Zhuang, G.; Wang, Z.; Sun, Y.; Wang, Y.; Yuan, H. Variation of sources and mixing mechanism of mineral dust with pollution aerosol—Revealed by the two peaks of a super dust storm in Beijing. Atmos. Res. 2007, 84, 265–279. [Google Scholar] [CrossRef]
- Gerel, O. Review of Mineral Resources in Mongolia. Asp. Min. Miner. Sci. 2023, 10, 1168–1169. [Google Scholar] [CrossRef]
- Yin, X.; Shi, S.; Zhang, M.; Li, J. Change Characteristic of Beijing Dust Weather and Its Sand-Dust Source Areas. Plateau Meteorol. 2007, 26, 1039–1044. [Google Scholar]
- Nie, F.J.; Xu, D.Q.; Jiang, S.H.; Liu, Y. Geological features and origin of Sumoqagan Obo superlarge independent fluorite deposit, Inner Mongolia. Miner. Depos. 2008, 27, 1–13. [Google Scholar]
- Liu, Y.; Guo, Q.; Liu, L.; Zhang, S.; Li, Q.; Liao, L. Comparative Study on Gemological and Mineralogical Characteristics and Coloration Mechanism of Four Color Types of Fluorite. Crystals 2023, 13, 75. [Google Scholar] [CrossRef]
- Jeong, G.Y. Mineralogy and geochemistry of Asian dust: Dependence on migration path, fractionation, and reactions with polluted air. Atmos. Chem. Phys. 2020, 20, 7411–7428. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements–methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef]
- Pan, Y.; Quan, J.; Ma, P.; Liao, Z.; Jia, X.; Dou, Y.; Cheng, Z.; Lei, L.; Wang, Y.; Zheng, M. Mineral dust scavenges anthropogenic aerosols in polluted environment. Atmos. Environ. 2023, 309, 119938. [Google Scholar] [CrossRef]
- Sugimoto, N.; Huang, Z.; Nishizawa, T.; Matsui, I.; Tatarov, B. Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer. Opt. Express 2012, 20, 20800–20807. [Google Scholar] [CrossRef]
- Li, B.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P. Fluorescent aerosol observation in the lower atmosphere with an integrated fluorescence-Mie lidar. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 211–218. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Zhou, T.; Bi, J.; Shi, J. Identification of fluorescent aerosol observed by a spectroscopic lidar over northwest China. Opt. Express 2023, 31, 22157–22169. [Google Scholar] [CrossRef]
- Veselovskii, I.; Hu, Q.; Goloub, P.; Podvin, T.; Korenskiy, M.; Pujol, O.; Dubovik, O.; Lopatin, A. Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: Feasibility experiment. Atmos. Meas. Tech. 2020, 13, 6691–6701. [Google Scholar] [CrossRef]
- Veselovskii, I.; Hu, Q.; Goloub, P.; Podvin, T.; Choël, M.; Visez, N.; Korenskiy, M. Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France. Atmos. Meas. Tech. 2021, 14, 4773–4786. [Google Scholar] [CrossRef]
- Veselovskii, I.; Hu, Q.; Ansmann, A.; Goloub, P.; Podvin, T.; Korenskiy, M. Fluorescence lidar observations of wildfire smoke inside cirrus: A contribution to smoke–cirrus interaction research. Atmos. Chem. Phys. 2022, 22, 5209–5221. [Google Scholar] [CrossRef]
- Hu, Q.; Goloub, P.; Veselovskii, I.; Podvin, T. The characterization of long-range transported North American biomass burning plumes: What can a multi-wavelength Mie–Raman-polarization-fluorescence lidar provide? Atmos. Chem. Phys. 2022, 22, 5399–5414. [Google Scholar] [CrossRef]
- Veselovskii, I.; Hu, Q.; Goloub, P.; Podvin, T.; Barchunov, B.; Korenskii, M. Combining Mie–Raman and fluorescence observations: A step forward in aerosol classification with lidar technology. Atmos. Meas. Tech. 2022, 15, 4881–4900. [Google Scholar] [CrossRef]
- Veselovskii, I.; Barchunov, B.; Hu, Q.; Goloub, P.; Podvin, T.; Korenskii, M.; Dubois, G.; Boissiere, W.; Kasianik, N. Retrieval and analysis of the composition of an aerosol mixture through Mie–Raman–fluorescence lidar observations. Atmos. Meas. Tech. 2024, 17, 4137–4152. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Chen, S.; Chen, H.; Guo, P.; Chen, S.; He, J.; Wang, J.; Nian, X. Classification and source analysis of low-altitude aerosols in Beijing using fluorescence–Mie polarization lidar. Opt. Commun. 2021, 479, 126417. [Google Scholar] [CrossRef]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined raman elastic-backscatter lidar. Appl. Opt. 1992, 31, 7113–7131. [Google Scholar] [CrossRef] [PubMed]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Mueller, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus Ser. B-Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef]
- Nicolae, D.; Reichardt, J.; Leinweber, R.; Schwebe, A.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F. Fluorescing aerosols and clouds: Investigations of co-existence. EPJ Web Conf. 2018, 176, 05010. [Google Scholar] [CrossRef]
- Pan, Y.L.; Huang, H.; Chang, R.K. Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263-and 351-nm laser at New Haven, CT, and Adelphi, MD. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2213–2221. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114, D13202. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Ansmann, A. Fine and coarse dust separation with polarization lidar. Atmos. Meas. Tech. 2014, 7, 3717–3735. [Google Scholar] [CrossRef]
- Veselovskii, I.; Kasianik, N.; Korenskii, M.; Hu, Q.; Goloub, P.; Podvin, T.; Liu, D. Multiwavelength fluorescence lidar observations of smoke plumes. Atmos. Meas. Tech. 2023, 16, 2055–2065. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Xie, S.D.; Yu, T.; Zhang, Y.H.; Zeng, L.M.; Qi, L.; Tang, X.Y. Characteristics of PM10, SO2, NO, and O3 in ambient air during the dust storm period in Beijing. Sci. Total Environ. 2005, 345, 153–164. [Google Scholar] [CrossRef]
- Chen, S.; Nian, X.; Chen, H.; Zhang, Y.; Guo, P.; Bu, Z. Observation and analysis of aerosol optical properties during pollution episodes in Beijing. Opt. Technol. 2021, 47, 570–576. [Google Scholar]
- Sun, Y.; Zhuang, G.; Wang, Y.; Zhao, X.; Li, J.; Wang, Z.; An, Z. Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. J. Geophys. Res. Atmos. 2005, 110, D24209. [Google Scholar] [CrossRef]
- Asai, K.; Sugimoto, N.; Huang, Z.; Nishizawa, T.; Matsui, I.; Tatarov, B.; Sugimoto, N.; Singh, U.N.; Jayaraman, A.; Huang, J.; et al. Study of fluorescence of atmospheric aerosols using a lidar spectrometer. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XIII, Kyoto, Japan, 29 October–1 November 2012. [Google Scholar]
- Wei, X.; Gu, X.; Chen, H.; Cheng, T.; Wang, Y.; Guo, H.; Bao, F.; Xiang, K. Multi-Scale Observations of Atmosphere Environment and Aerosol Properties over North China during APEC Meeting Periods. Atmosphere 2016, 7, 4. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Duan, F.; He, K.; Zhu, L.; Huang, T.; Kimoto, T.; Ma, X.; Ma, T.; Xu, L.; et al. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. Environ. Pollut. 2017, 229, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Pan, X.; Nishizawa, T.; Kobayashi, H.; Uno, I.; Wang, X.; Shimizu, A.; Wang, Z. Variability of depolarization of aerosol particles in the megacity of Beijing: Implications for the interaction between anthropogenic pollutants and mineral dust particles. Atmos. Chem. Phys. 2018, 18, 18203–18217. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, N.; Anshumali. Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke-inferences from 10-year long CALIOP observations. Remote Sens. Environ. 2018, 208, 120–132. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Chen, J.; Li, Q.; Wang, X.; Wang, W.; Zhang, Q.; Xue, L.; Ding, A.; Mellouki, A. Six sources mainly contributing to the haze episodes and health risk assessment of PM2.5 at Beijing suburb in winter 2016. Ecotoxicol. Environ. Saf. 2018, 166, 146–156. [Google Scholar] [CrossRef] [PubMed]
Date | UTC Time | Height (km) | ||
---|---|---|---|---|
16 March | 10:50–22:00 | 0.8~2.0 | 0.27 ± 0.02 | 0.46 ± 0.05 |
18 March | 10:50–18:00 | 0.8~3.0 | 0.29 ± 0.01 | 0.48 ± 0.04 |
27 March | 16:50–21:40 | 0.8~1.5 | 0.36 ± 0.02 | 0.48 ± 0.05 |
14 April | 19:00–21:10 | 1.0~2.0 | 0.27 ± 0.01 | 0.29 ± 0.04 |
10 May | 12:15–20:40 | 0.8~2.5 | 0.30 ± 0.02 | 0.31 ± 0.02 |
Date | UTC Time | Height (km) | ||
---|---|---|---|---|
6 March | 16:00–20:00 | 1.0~2.0 | 0.13 ± 0.01 | 0.72 ± 0.05 |
3 April | 11:00–14:30 | 0.8~1.4 | 0.14 ± 0.01 | 0.82 ± 0.09 |
25 April | 11:50–21:00 | 1.0~1.5 | 0.14 ± 0.01 | 0.78 ± 0.05 |
7 May | 12:00–17:00 | 0.8~1.5 | 0.15 ± 0.01 | 0.91 ± 0.06 |
Aerosol Type | Center |
Center | ||
---|---|---|---|---|
DD | 0.23~0.39 | 0.18~0.63 | 0.29 | 0.40 |
MD | 0.30~0.39 | 0.71~1.23 | 0.35 | 0.97 |
Pollution | 0.10~0.17 | 0.55~1.10 | 0.14 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Yang, H.; Tan, W.; Chen, S.; Chen, H.; Guo, P.; Xu, Q.; Gong, J.; Yu, Y. Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024. Remote Sens. 2024, 16, 3225. https://doi.org/10.3390/rs16173225
Jiang Y, Yang H, Tan W, Chen S, Chen H, Guo P, Xu Q, Gong J, Yu Y. Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024. Remote Sensing. 2024; 16(17):3225. https://doi.org/10.3390/rs16173225
Chicago/Turabian StyleJiang, Yurong, Haokai Yang, Wangshu Tan, Siying Chen, He Chen, Pan Guo, Qingyue Xu, Jia Gong, and Yinghong Yu. 2024. "Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024" Remote Sensing 16, no. 17: 3225. https://doi.org/10.3390/rs16173225
APA StyleJiang, Y., Yang, H., Tan, W., Chen, S., Chen, H., Guo, P., Xu, Q., Gong, J., & Yu, Y. (2024). Observation and Classification of Low-Altitude Haze Aerosols Using Fluorescence–Raman–Mie Polarization Lidar in Beijing during Spring 2024. Remote Sensing, 16(17), 3225. https://doi.org/10.3390/rs16173225