Next Article in Journal
Four-Dimensional Parameter Estimation for Mixed Far-Field and Near-Field Target Localization Using Bistatic MIMO Arrays and Higher-Order Singular Value Decomposition
Previous Article in Journal
The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines

by
Yulong Guo
1,2,
Cailan Gong
1,*,
Yong Hu
1,
Fuqiang Zheng
1 and
Yunmeng Liu
1
1
Key Laboratory of Infrared System Detection and Imaging Technologies, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Remote Sens. 2024, 16(18), 3367; https://doi.org/10.3390/rs16183367 (registering DOI)
Submission received: 8 June 2024 / Revised: 6 September 2024 / Accepted: 8 September 2024 / Published: 10 September 2024

Abstract

Accurate on-orbit wavelength calibration of the spaceborne hyperspectral payload is the key to the quantitative analysis and application of observational data. Due to the high spectral resolution of general spaceborne hyperspectral greenhouse gas (GHG) detection instruments, the common Fraunhofer lines in the solar atmosphere can be used as a reference for on-orbit wavelength calibration. Based on the performances of a GHG detection instrument under development, this study simulated the instrument’s solar-viewing measurement spectra and analyzed the main sources of errors in the on-orbit wavelength calibration method of the instrument using the solar Fraunhofer lines, including the Doppler shift correction error, the instrumental measurement error, and the peak-seek algorithm error. The calibration accuracy was independently calculated for 65 Fraunhofer lines within the spectral range of the instrument. The results show that the wavelength calibration accuracy is mainly affected by the asymmetry of the Fraunhofer lines and the random error associated with instrument measurement, and it can cause calibration errors of more than 1/10 of the spectral resolution at maximum. A total of 49 Fraunhofer lines that meet the requirements for calibration accuracy were screened based on the design parameters of the instrument. Due to the uncertainty of simulation, the results in this study have inherent limitations, but provide valuable insights for quantitatively analyzing the errors of the on-orbit wavelength calibration method using the Fraunhofer lines, evaluating the influence of instrumental parameters on the calibration accuracy, and enhancing the accuracy of on-orbit wavelength calibration for similar GHG detection payloads.
Keywords: on-orbit wavelength calibration; solar Fraunhofer lines; high resolution; greenhouse gas on-orbit wavelength calibration; solar Fraunhofer lines; high resolution; greenhouse gas

Share and Cite

MDPI and ACS Style

Guo, Y.; Gong, C.; Hu, Y.; Zheng, F.; Liu, Y. On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines. Remote Sens. 2024, 16, 3367. https://doi.org/10.3390/rs16183367

AMA Style

Guo Y, Gong C, Hu Y, Zheng F, Liu Y. On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines. Remote Sensing. 2024; 16(18):3367. https://doi.org/10.3390/rs16183367

Chicago/Turabian Style

Guo, Yulong, Cailan Gong, Yong Hu, Fuqiang Zheng, and Yunmeng Liu. 2024. "On-Orbit Wavelength Calibration Error Analysis of the Spaceborne Hyperspectral Greenhouse Gas Monitoring Instrument Using the Solar Fraunhofer Lines" Remote Sensing 16, no. 18: 3367. https://doi.org/10.3390/rs16183367

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop