Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Acquisition
2.2.1. ALS Data
2.2.2. GEDI Data
2.2.3. Ancillary Data
Type of Change | Data | Source | Temporal Resolution | Dates Used | Resolution (Native and Coarsened) |
---|---|---|---|---|---|
Fire | MODIS 500 m burned area monthly | Giglio et al., 2015 [55] | Aggregated to annual | 2018, 2019, 2020 | 500 m |
CCI burned area | Chuvieco et al., 2018 [56] | Aggregated to annual | 2018, 2019, 2020 | 250 m | |
Land use change | MAPBIOMAS Brazil landcover | Souza et al., 2020 [57] | Annual | 2018, 2019, 2020 | 30 m coarsened to 90 m |
Forest loss | Forest loss year | Hansen et al., 2013 [58] | Annual | 2018, 2019, 2020 | 30 m coarsened to 90 m |
2.3. GEDI Simulation
2.4. Error Metrics
2.5. Validation
2.6. Error Minimization
2.6.1. Geolocation Correction
2.6.2. Filtering Approach
Filter | Data Used | Identified By |
---|---|---|
Excluding daytime samples | L2A: solar elevation < 0 | Beck et al., (2020) [64]; Fayad et al., (2021) [16] |
Excluding daytime and coverage beam samples | L2A: solar elevation < 0 and beams | Liu et al., (2021) [2] |
Sensitivity > 0.95 | L2A: Sensitivity | Beck et al., (2020) [64]; Rishmawi et al., (2021) [29] |
Excluding coverage beams for canopy cover > 95% | L2A: Beams, GEDIsim: Cover | Beck et al., (2020) [64] |
Excluding slopes > 30 degrees | ALOS PRISM DEM | Liu et al., (2021) [2] |
Excluding sensitivity < canopy cover | L2A: Sensitivity, GEDIsim: Cover |
3. Results
3.1. Validation
3.2. Geolocation Correction
3.3. Error Minimization: Filtering
3.4. Derived Canopy Metrics
4. Discussion
4.1. Findings
4.2. Implications
4.3. Limitations
4.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Patterson, P.L.; Healey, S.P.; Ståhl, G.; Saarela, S.; Holm, S.; Andersen, H.E.; Dubayah, R.O.; Duncanson, L.; Hancock, S.; Armston, J.; et al. Statistical Properties of Hybrid Estimators Proposed for GEDI—NASA’s Global Ecosystem Dynamics Investigation. Environ. Res. Lett. 2019, 14, 065007. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Dubayah, R.; Armston, J.; Healey, S.P.; Bruening, J.M.; Patterson, P.L.; Kellner, J.R.; Duncanson, L.; Saarela, S.; Ståhl, G.; Yang, Z.; et al. GEDI Launches a New Era of Biomass Inference from Space. Environ. Res. Lett. 2022, 17, 095001. [Google Scholar] [CrossRef]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground Biomass Density Models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global Canopy Height Regression and Uncertainty Estimation from GEDI LIDAR Waveforms with Deep Ensembles. Remote Sens. Environ. 2022, 268, 112760. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping Forest Canopy Height Globally with Spaceborne Lidar. J. Geophys. Res. Biogeosci 2011, 116, G04021. [Google Scholar] [CrossRef]
- Boucher, P.B.; Hancock, S.; Orwig, D.A.; Duncanson, L.; Armston, J.; Tang, H.; Krause, K.; Cook, B.; Paynter, I.; Li, Z.; et al. Detecting Change in Forest Structure with Simulated GEDI Lidarwaveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges Tsugae) Infestation. Remote Sens. 2020, 12, 1304. [Google Scholar] [CrossRef]
- Burns, P.; Clark, M.; Salas, L.; Hancock, S.; Leland, D.; Jantz, P.; Dubayah, R.; Goetz, S.J. Incorporating Canopy Structure from Simulated GEDI Lidar into Bird Species Distribution Models. Environ. Res. Lett. 2020, 15, 095002. [Google Scholar] [CrossRef]
- Qi, W.; Dubayah, R.O. Combining Tandem-X InSAR and Simulated GEDI Lidar Observations for Forest Structure Mapping. Remote Sens. Environ. 2016, 187, 253–266. [Google Scholar] [CrossRef]
- Schneider, F.D.; Ferraz, A.; Hancock, S.; Duncanson, L.I.; Dubayah, R.O.; Pavlick, R.P.; Schimel, D.S. Towards Mapping the Diversity of Canopy Structure from Space with GEDI. Environ. Res. Lett. 2020, 15, 115006. [Google Scholar] [CrossRef]
- Wang, C.; Elmore, A.J.; Numata, I.; Cochrane, M.A.; Shaogang, L.; Huang, J.; Zhao, Y.; Li, Y. Factors Affecting Relative Height and Ground Elevation Estimations of GEDI among Forest Types across the Conterminous USA. GIsci Remote Sens. 2022, 59, 975–999. [Google Scholar] [CrossRef]
- Goetz, S.; Dubayah, R. Advances in Remote Sensing Technology and Implications for Measuring and Monitoring Forest Carbon Stocks and Change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Hancock, S.; Armston, J.; Hofton, M.; Sun, X.; Tang, H.; Duncanson, L.I.; Kellner, J.R.; Dubayah, R. The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth Space Sci. 2019, 6, 294–310. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Riedi, J. Quality Assessment of Acquired Gedi Waveforms: Case Study over France, Tunisia and French Guiana. Remote Sens. 2021, 13, 3144. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Rebold, T.; Thomas, T.; Pennington, T. Algorithm Theoretical Basis Document (ATBD) for GEDI Waveform Geolocation for L1 and L2 Products, Version 1.0; LP DAAC: Greenbelt, MD, USA, 2019.
- Roy, D.P.; Kashongwe, H.B.; Armston, J. The Impact of Geolocation Uncertainty on GEDI Tropical Forest Canopy Height Estimation and Change Monitoring. Sci. Remote Sens. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Magruder, L.A.; Ricklefs, R.L.; Silverberg, E.C.; Horstman, M.F.; Suleman, M.A.; Schutz, B.E. ICESat Geolocation Validation Using Airborne Photography. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2758–2766. [Google Scholar] [CrossRef]
- LP DACC GEDI L2A: Publications. Available online: https://lpdaac.usgs.gov/resources/publications/?GEDI02_A (accessed on 1 December 2023).
- Hansen, A.J.; Noble, B.P.; Veneros, J.; East, A.; Goetz, S.J.; Supples, C.; Watson, J.E.M.; Jantz, P.A.; Pillay, R.; Jetz, W.; et al. Towards Monitoring Ecosystem Integrity within the Post-2020 Global Biodiversity Framework. Conserv. Lett. 2021, 14, e12822. [Google Scholar] [CrossRef]
- Hansen, A.; Barnett, K.; Jantz, P.; Phillips, L.; Goetz, S.J.; Hansen, M.; Venter, O.; Watson, J.E.M.; Burns, P.; Atkinson, S.; et al. Global Humid Tropics Forest Structural Condition and Forest Structural Integrity Maps. Sci. Data 2019, 6, 232. [Google Scholar] [CrossRef]
- Hansen, A.J.; Burns, P.; Ervin, J.; Goetz, S.J.; Hansen, M.; Venter, O.; Watson, J.E.M.; Jantz, P.A.; Virnig, A.L.S.; Barnett, K.; et al. A Policy-Driven Framework for Conserving the Best of Earth’s Remaining Moist Tropical Forests. Nat. Ecol. Evol. 2020, 4, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Manso, A.; Quintano, C.; Roberts, D.A. Burn Severity Analysis in Mediterranean Forests Using Maximum Entropy Model Trained with EO-1 Hyperion and LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2019, 155, 102–118. [Google Scholar] [CrossRef]
- García, M.; North, P.; Viana-Soto, A.; Stavros, N.E.; Rosette, J.; Martín, M.P.; Franquesa, M.; González-Cascón, R.; Riaño, D.; Becerra, J.; et al. Evaluating the Potential of LiDAR Data for Fire Damage Assessment: A Radiative Transfer Model Approach. Remote Sens. Environ. 2020, 247, 111893. [Google Scholar] [CrossRef]
- Liu, M.; Popescu, S.; Malambo, L. Feasibility of Burned Area Mapping Based on ICESAT-2 Photon Counting Data. Remote Sens. 2020, 12, 24. [Google Scholar] [CrossRef]
- Zellweger, F.; De Frenne, P.; Lenoir, J.; Rocchini, D.; Coomes, D. Advances in Microclimate Ecology Arising from Remote Sensing. Trends Ecol. Evol. 2019, 34, 327–341. [Google Scholar] [CrossRef]
- Healey, S.P.; Yang, Z.; Gorelick, N.; Ilyushchenko, S. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sens. 2020, 12, 2840. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating Gedi Lidar Measurements and Viirs Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Blair, J.B.; Hofton, M.A. Modeling Laser Altimeter Return Waveforms over Complex Vegetation Using High-Resolution Elevation Data. Geophys. Res. Lett. 1999, 26, 2509–2512. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Guayasamin, J.; Ribas, C.; Carnaval, A.; Carrillo, J.; Hoorn, C.; Lohmann, L.; Riff, D.; Ulloa Ulloa, C.; Albert, J.; Nobre, C.; et al. Chapter 2: Evolution of Amazonian Biodiversity. In Amazon Assessment Report 2021; Nations Sustainable Development Solutions Network: New York, NY, USA, 2021. [Google Scholar]
- Pillay, R.; Venter, M.; Aragon-Osejo, J.; González-del-Pliego, P.; Hansen, A.J.; Watson, J.E.M.; Venter, O. Tropical Forests Are Home to over Half of the World’s Vertebrate Species. Front. Ecol. Environ. 2022, 20, 10–15. [Google Scholar] [CrossRef] [PubMed]
- León, B.; Pitman, N.; Roque, J. Introducción a Las Plantas Endémicas del Perú. Rev. Peru. Biol. 2006, 13, 9–22. [Google Scholar] [CrossRef]
- Martins, E.; Martinelli, G.; Loyola, R. Brazilian Efforts towards Achieving a Comprehensive Extinction Risk Assessment for Its Known Flora. Rodriguesia 2018, 69, 1529–1537. [Google Scholar] [CrossRef]
- ICUN. An Introduction to the IUCN Red List of Ecosystems; ICUN: Gland, Switzerland, 2016. [Google Scholar]
- Zapata-Ríos, G.; Andreazzi, C.; Carnaval, A.; Doria, C.; Duponchelle, F.; Flecker, A.; Guayasamín, J.; Heilpern, S.; Jenkins, C.; Maldonado, C.; et al. Chapter 3: Biological Diversity and Ecological Networks in the Amazon. In Amazon Assessment Report 2021; Nations Sustainable Development Solutions Network: New York, NY, USA, 2021. [Google Scholar]
- da Silva, J.M.C.; Rylands, A.B.; da Fonseca, G.A.B. The Fate of the Amazonian Areas of Endemism. Conserv. Biol. 2005, 19, 689–694. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Anderson, L.O.; Aragão, L.E.O.C. The Brazilian Amazon Deforestation Rate in 2020 Is the Greatest of the Decade. Nat. Ecol. Evol. 2021, 5, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, A.R.; Uhl, C. Fire in Amazonian Selectively Logged Rain Forest and the Potential for Fire Reduction. Ecol. Appl. 1997, 7, 713–725. [Google Scholar] [CrossRef]
- Uhl, C.; Buschbacher, R. A Disturbing Synergism Between Cattle Ranch Burning Practices and Selective Tree Harvesting in the Eastern Amazon. Biotropica 1985, 17, 265. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A. Landscape-Scale Variation in Forest Structure and Biomass in a Tropical Rain Forest. For. Ecol. Manag. 2000, 137, 185–198. [Google Scholar] [CrossRef]
- Longo, M.; Keller, M.; dos-Santos, M.N.; Leitold, V.; Pinagé, E.R.; Baccini, A.; Saatchi, S.; Nogueira, E.M.; Batistella, M.; Morton, D.C. Aboveground Biomass Variability across Intact and Degraded Forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 2016, 30, 1639–1660. [Google Scholar] [CrossRef]
- Hyde, P.; Dubayah, R.; Peterson, B.; Blair, J.B.; Hofton, M.; Hunsaker, C.; Knox, R.; Walker, W. Mapping Forest Structure for Wildlife Habitat Analysis Using Waveform Lidar: Validation of Montane Ecosystems. Remote Sens. Environ. 2005, 96, 427–437. [Google Scholar] [CrossRef]
- Ceccherini, G.; Girardello, M.; Beck, P.S.A.; Migliavacca, M.; Duveiller, G.; Dubois, G.; Avitabile, V.; Battistella, L.; Barredo, J.I.; Cescatti, A. Spaceborne LiDAR Reveals the Effectiveness of European Protected Areas in Conserving Forest Height and Vertical Structure. Commun. Earth Environ. 2023, 4, 97. [Google Scholar] [CrossRef]
- Dos-Santos, M.N.; Keller, M.M.; Morton, D.C. LiDAR Surveys over Selected Forest Research Sites, Brazilian Amazon, 2008–2018; ORNL DAAC: Oak RIdge, TN, USA, 2019.
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Level III Ecoregions of Central and South America; US EPA: Washington, DC, USA, 2011.
- Mapbiomas MapBiomas Project—Collection 3 of the Annual Series of Land Cover and Land Use Maps in Brazil. Available online: https://mapbiomas.org/ (accessed on 31 January 2022).
- Dos-Santos, M.N.; Keller, M.M.; Morton, D.C. User Guide: LiDAR Surveys over Selected Forest Research Sites, Brazilian. Amazon, 2008–2018. Available online: https://daac.ornl.gov/CMS/guides/LiDAR_Forest_Inventory_Brazil.html (accessed on 26 May 2022).
- Dubayah, R.; Hofton, M.; Blair, J.B.; Armston, J.; Tang, H.; Luthcke, S. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002. Available online: https://lpdaac.usgs.gov/products/gedi02_av002/ (accessed on 1 December 2023).
- Beck, J.; Armston, J.; Hofton, M.; Luthcke, S. GLOBAL Ecosystem Dynamics Investigation (GEDI) Level 02 User Guide for SDPS PGE Version 1 (P001) of GEDI L2A Data and SDPS PGE Version 1 (P001) of GEDI L2B Data; LP DAAC: Greenbelt, MD, USA, 2020; Volume 1. Available online: https://lpdaac.usgs.gov/documents/589/GEDIL02_User_Guide_V1.pdf (accessed on 1 March 2022).
- Hofton, M.; Blair, J.B. Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products; Version 1.0.; LP DAAC: Greenbelt, MD, USA, 2019.
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. LP DAAC: Greenbelt, MD, USA, 2015. [Google Scholar]
- Chuvieco, E.; Pettinari, M.L.; Lizundia-Loiola, J.; Storm, T.; Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel Product, version 5.1; 2018. Available online: https://catalogue.ceda.ac.uk/uuid/58f00d8814064b79a0c49662ad3af537/ (accessed on 1 December 2023).
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Hancock, S. GediSimulator. Available online: https://bitbucket.org/StevenHancock/gedisimulator/src/master/ (accessed on 31 October 2023).
- Leite, R.V.; Silva, C.A.; Broadbent, E.N.; do Amaral, C.H.; Liesenberg, V.; de Almeida, D.R.A.; Mohan, M.; Godinho, S.; Cardil, A.; Hamamura, C.; et al. Large Scale Multi-Layer Fuel Load Characterization in Tropical Savanna Using GEDI Spaceborne Lidar Data. Remote Sens. Environ. 2022, 268, 112764. [Google Scholar] [CrossRef]
- Dhargay, S.; Lyell, C.S.; Brown, T.P.; Inbar, A.; Sheridan, G.J.; Lane, P.N.J. Performance of GEDI Space-Borne LiDAR for Quantifying Structural Variation in the Temperate Forests of South-Eastern Australia. Remote Sens. 2022, 14, 3615. [Google Scholar] [CrossRef]
- East, A.; Hansen, A.; Armenteras, D.; Jantz, P.; Roberts, D.W. Measuring Understory Fire Effects from Space: Canopy Change in Response to Tropical Understory Fire and What This Means for Applications of GEDI to Tropical Forest Fire. Remote Sens. 2023, 15, 696. [Google Scholar] [CrossRef]
- Ferrer Velasco, R.; Lippe, M.; Tamayo, F.; Mfuni, T.; Sales-Come, R.; Mangabat, C.; Schneider, T.; Günter, S. Towards Accurate Mapping of Forest in Tropical Landscapes: A Comparison of Datasets on How Forest Transition Matters. Remote Sens. Environ. 2022, 274, 112997. [Google Scholar] [CrossRef]
- Beck, J.; Wirt, B.; Armston, J.; Hofton, M.; Luthcke, S.; Tang, H. GLOBAL Ecosystem Dynamics Investigation (GEDI) Level 2 User Guide; Verson 2.0; LP DAAC: Greenbelt, MD, USA, 2021; Volume 3, pp. 1–25.
- Oliveira, V.C.P.; Zhang, X.; Peterson, B.; Ometto, J.P. Using Simulated GEDI Waveforms to Evaluate the Effects of Beam Sensitivity and Terrain Slope on GEDI L2A Relative Height Metrics over the Brazilian Amazon Forest. Sci. Remote Sens. 2023, 7, 100083. [Google Scholar] [CrossRef]
- Beck, J.; Luthcke, S.B.; Hofton, M.; Armstron, J. GLOBAL Ecosystem Dynamics Investigation (GEDI) Level 1B User Guide; Version 1.0.; LP DAAC: Greenbelt, MD, USA, 2020; Volume 1.
- Lahssini, K.; Baghdadi, N.; le Maire, G.; Fayad, I. Influence of GEDI Acquisition and Processing Parameters on Canopy Height Estimates over Tropical Forests. Remote Sens. 2022, 14, 6264. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Luthcke, S.B.; Sabaka, T.J.; Nicholas, J.B.; Preaux, S.; Hofton, M.A. GEDI L3 Gridded Land Surface Metrics, Version 2; ORNL DAAC: Oak RIdge, TN, USA, 2021.
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; MacBean, N.; et al. Aboveground Woody Biomass Product Validation Good Practices Protocol. In Good Practices for Satellite Derived Land Product Validation; Duncanson, L., Disney, M., Armston, J., Nickeson, J., Minor, D., Camacho, F., Eds.; Committee on Earth Observation Satellites Working Group on Calibration and Validation: Geneva, Switzerland, 2021. [Google Scholar]
- NASA. University of Maryland GEDI Ecosystem LiDAR Calibration/Validation. Available online: https://gedi.umd.edu/science/calibration-validation/ (accessed on 1 June 2022).
- Hunter, M.O.; Keller, M.; Victoria, D.; Morton, D.C. Tree Height and Tropical Forest Biomass Estimation. Biogeosciences 2013, 10, 8385–8399. [Google Scholar] [CrossRef]
- Rappaport, D.I.; Morton, D.C.; Longo, M.; Keller, M.; Dubayah, R.; Dos-Santos, M.N. Quantifying Long-Term Changes in Carbon Stocks and Forest Structure from Amazon Forest Degradation. Environ. Res. Lett. 2018, 13, 065013. [Google Scholar] [CrossRef]
- Sato, L.Y.; Gomes, V.C.F.; Shimabukuro, Y.E.; Keller, M.; Arai, E.; dos-Santos, M.N.; Brown, I.F.; de Aragão, L.E.O.E.C. Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sens. 2016, 8, 839. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.; Eitel, J.; Saatchi, S. Remote Sensing Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest. Remote Sens. 2017, 9, 1068. [Google Scholar] [CrossRef]
- Leitold, V.; Keller, M.; Morton, D.C.; Cook, B.D.; Shimabukuro, Y.E. Airborne Lidar-Based Estimates of Tropical Forest Structure in Complex Terrain: Opportunities and Trade-Offs for REDD+. Carbon. Balance Manag. 2014, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating Forest Canopy Fuel Parameters Using LIDAR Data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
Filter | MAE | RMSE | Bias | 95% Range | Sample Size | ||||
---|---|---|---|---|---|---|---|---|---|
RH50 | RH98 | RH50 | RH98 | RH50 | RH98 | RH50 | RH98 | ||
No geolocation correction | 3.76 | 3.41 | 5.59 | 5.32 | −1.75 | −0.95 | −12.37:8.87 | −12.37:8.87 | 1345 |
Geolocation corrected | 3.26 | 3.36 | 4.90 | 5.64 | −1.95 | −1.07 | −10.94:7.04 | −12.14:9.99 | 1320 |
Filter | MAE | RMSE | Bias | 95% Range | Sample Size | Percent Removed | ||||
---|---|---|---|---|---|---|---|---|---|---|
RH50 | RH98 | RH50 | RH98 | RH50 | RH98 | RH50 | RH98 | |||
Data with flags | 4.17 | 4.69 | 6.30 | 7.77 | −2.70 | −2.55 | −14.08:8.68 | −17.22:12.1 | 2420 | |
Geolocation corrected * | 3.26 | 3.36 | 4.90 | 5.64 | −1.95 | −1.07 | −10.94:7.04 | −12.14:9.99 | 1320 | na |
Truncated | 3.22 | 3.36 | 4.88 | 5.64 | −1.92 | −1.07 | −10.94:7.04 | −12.14:9.99 | 1320 | 0% |
Excluding daytime samples | 3.44 | 3.39 | 5.15 | 5.66 | −2.12 | −0.94 | −11.52:7.28 | −12.10:10.2 | 827 | 37% |
Excluding daytime and coverage beam samples | 3.41 | 3.05 | 5.04 | 4.98 | −2.17 | −0.54 | −11.26:6.92 | −10.44:9.35 | 637 | 52% |
Sensitivity > 0.95 | 3.25 | 3.06 | 4.83 | 4.98 | −1.82 | −0.54 | −10.77:7.12 | −9.87:8.81 | 1155 | 13% |
Excluding coverage beams for canopy cover > 95% | 3.16 | 3.24 | 4.78 | 5.50 | −1.78 | −0.83 | −10.64:7.08 | −11.71:10.0 | 1217 | 8% |
Slopes >30 degrees | 3.25 | 3.36 | 4.90 | 5.63 | −1.96 | −1.07 | −10.94:7.03 | −12.13:9.97 | 1319 | 0.08% |
Sensitivity < canopy cover | 2.83 | 2.84 | 4.21 | 4.69 | −1.39 | −0.34 | −9.34:6.55 | −9.70:9.01 | 1113 | 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
East, A.; Hansen, A.; Jantz, P.; Currey, B.; Roberts, D.W.; Armenteras, D. Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon. Remote Sens. 2024, 16, 3550. https://doi.org/10.3390/rs16193550
East A, Hansen A, Jantz P, Currey B, Roberts DW, Armenteras D. Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon. Remote Sensing. 2024; 16(19):3550. https://doi.org/10.3390/rs16193550
Chicago/Turabian StyleEast, Alyson, Andrew Hansen, Patrick Jantz, Bryce Currey, David W. Roberts, and Dolors Armenteras. 2024. "Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon" Remote Sensing 16, no. 19: 3550. https://doi.org/10.3390/rs16193550
APA StyleEast, A., Hansen, A., Jantz, P., Currey, B., Roberts, D. W., & Armenteras, D. (2024). Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon. Remote Sensing, 16(19), 3550. https://doi.org/10.3390/rs16193550