Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Datasets
2.2.1. GEDI Lidar Dataset
2.2.2. Airborne Lidar Dataset
2.3. Methods
2.3.1. Extracting the TRW from the Received Waveform
2.3.2. Deriving the Height Percentile Based on the TRW
2.3.3. Calculating the Reference Height Percentiles
2.3.4. Evaluating the Height Percentiles by Different Methods
3. Results
3.1. Calculation and Analysis on the TRW
3.2. Extraction and Analysis on Height Percentiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koetz, B.; Morsdorf, F.; Sun, G.; Ranson, K.; Itten, K.; Allgower, B. Inversion of a Lidar Waveform Model for Forest Biophysical Parameter Estimation. IEEE Geosci. Remote Sens. Lett. 2006, 3, 49–53. [Google Scholar]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- Brodie, J.F.; Mohd-Azlan, J.; Chen, C.; Wearn, O.R.; Deith, M.C.M.; Ball, J.G.C.; Slade, E.M.; Burslem, D.F.R.P.; Teoh, S.W.; Williams, P.J.; et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 2023, 620, 807–812. [Google Scholar] [CrossRef]
- Jucker, T.; Gosper, C.R.; Wiehl, G.; Yeoh, P.B.; Raisbeck-Brown, N.; Fischer, F.J.; Graham, J.; Langley, H.; Newchurch, W.; O’Donnell, A.J.; et al. Using multi-platform LiDAR to guide the conservation of the world’s largest temperate woodland. Remote Sens. Environ. 2023, 296, 113745. [Google Scholar]
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef]
- Song, C.; Dickinson, M.B. Extracting forest canopy structure from spatial information of high resolution optical imagery: Tree crown size versus leaf area index. Int. J. Remote Sens. 2008, 29, 5605–5622. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Dang, Y.; Bashir, B.; Xie, B.; Huang, Z. Estimates of forest canopy height using a combination of ICESat-2/ATLAS data and stereo-photogrammetry. Remote Sens. 2020, 12, 3649. [Google Scholar] [CrossRef]
- Adrah, E.; Jaafar, W.S.; Bajaj, S.; Omar, H.; Leite, R.V.; A Silva, C.; Cardil, A.; Mohan, M. Analyzing canopy height variations in secondary tropical forests of Malaysia using NASA GEDI. IOP Conf. Ser. Earth Environ. Sci. 2021, 880, 012031. [Google Scholar]
- Duncanson, L.; Niemann, K.; Wulder, M. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens. Environ. 2010, 114, 138–154. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Lippl, F.; Sobe, C. Assessing the Vertical Structure of Forests Using Airborne and Spaceborne LiDAR Data in the Austrian Alps. Remote Sens. 2023, 15, 664. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models. Remote Sens. Appl. Soc. Environ. 2022, 27, 100817. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H.; Zhang, Y.; Li, S.; Pang, Y.; Ma, T.; Li, Y. Retrieval and validation of vertical LAI profile derived from airborne and spaceborne LiDAR data at a deciduous needleleaf forest site. GISci. Remote Sens. 2023, 60, 2214987. [Google Scholar] [CrossRef]
- Harding, D.J.; Dabney, P.W.; Valett, S. Polarimetric, two-color, photon-counting laser altimeter measurements of forest canopy structure. In International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications; SPIE: London, UK, 2011; Volume 8286. [Google Scholar]
- Lee, S.; Ni-Meister, W.; Yang, W.; Chen, Q. Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sens. Environ. 2011, 115, 2776–2785. [Google Scholar]
- Maltamo, M.; Eerikäinen, K.; Packalén, P.; Hyyppä, J. Estimation of stem volume using laser scanning-based canopy height metrics. Forestry 2006, 79, 217–229. [Google Scholar] [CrossRef]
- Naesset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar]
- Mandl, L.; Stritih, A.; Seidl, R.; Ginzler, C.; Senf, C. Spaceborne LiDAR for characterizing forest structure across scales in the European Alps. Remote Sens. Ecol. Conserv. 2023, 9, 599–614. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Næsset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J. For. Res. 2004, 19, 164–179. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Li, W.; Jia, S.; Yue, H. Hybrid model for estimating forest canopy heights using fused multimodal spaceborne LiDAR data and optical imagery. Int. J. Appl. Earth Obs. Geoinform. 2023, 122, 103431. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Wang, J.; Li, D.; Zhou, H. A noise removal algorithm based on OPTICS for photon-counting LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1471–1475. [Google Scholar]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Lao, J.; Li, D. Consistency analysis of forest height retrievals between GEDI and ICESat-2. Remote Sens. Environ. 2022, 281, 113244. [Google Scholar] [CrossRef]
- Chen, Q. Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 111–122. [Google Scholar]
- Pang, Y.; Zhao, F.; Li, Z. Research on Average Tree Height Extraction from Airborne Lidar. J. Remote Sens. 2008, 12, 152–158. [Google Scholar]
- Wang, Y.; Ni, W.; Sun, G.; Chi, H.; Zhang, Z.; Guo, Z. Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass. Remote Sens. Environ. 2019, 224, 386–400. [Google Scholar]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Gregoire, T.G.; Ståhl, G. Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”. Remote Sens. Environ. 2013, 128, 299–314. [Google Scholar]
- Sun, G.; Ranson, K.; Kimes, D.; Blair, J.; Kovacs, K. Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens. Environ. 2008, 112, 107–117. [Google Scholar] [CrossRef]
- Hofton, M.; Blair, J.B.; Story, S.; Yi, D. Algorithm Theoretical Basis Document (ATBD) for GEDI Transmit and Receive Waveform Processing for L1 and L2 Products; University of Maryland: College Park, MD, USA, 2019; Volume 44. [Google Scholar]
- Crockett, E.T.; Atkins, J.W.; Guo, Q.; Sun, G.; Potter, K.M.; Ollinger, S.; Silva, C.A.; Tang, H.; Woodall, C.W.; Holgerson, J.; et al. Structural and species diversity explain aboveground carbon storage in forests across the United States: Evidence from GEDI and forest inventory data. Remote Sens. Environ. 2023, 295, 113703. [Google Scholar] [CrossRef]
- May, P.; McConville, K.S.; Moisen, G.G.; Bruening, J.; Dubayah, R. A spatially varying model for small area estimates of biomass density across the contiguous United States. Remote Sens. Environ. 2023, 286, 113420. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Rojas, A.; Lee, S. Direct use of large-footprint lidar waveforms to estimate aboveground biomass. Remote Sens. Environ. 2022, 280, 113147. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, H.; Tong, X.; Zhang, H.; Tang, H.; Li, B.; Wu, D.; Hao, X.; Liu, S.; Xu, X.; et al. A Combined Deconvolution and Gaussian Decomposition Approach for Overlapped Peak Position Extraction from Large-Footprint Satellite Laser Altimeter Waveforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2286–2303. [Google Scholar] [CrossRef]
- Zhou, T.; Popescu, S.C.; Krause, K.; Sheridan, R.D.; Putman, E. Gold—A novel deconvolution algorithm with optimization for waveform LiDAR processing. ISPRS J. Photogramm. Remote Sens. 2017, 129, 131–150. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosci. 2010, 115, G00E09. [Google Scholar]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 2022, 268, 112760. [Google Scholar] [CrossRef]
- Lee, S.K.; Fatoyinbo, T.; Marselis, S.M.; Qi, W.; Hancock, S.; Armston, J.; Dubayah, R. Spaceborne data fusion for large-scale forest parameter estimation: GEDI LiDAR & Tandem-X INSAR missions. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Xu, Y.; Ding, S.; Chen, P.; Tang, H.; Ren, H.; Huang, H. Horizontal Geolocation Error Evaluation and Correction on Full-Waveform LiDAR Footprints via Waveform Matching. Remote Sens. 2023, 15, 776. [Google Scholar]
- Tai, Y.-W.; Tan, P.; Brown, M.S. Richardson-Lucy Deblurring for Scenes under a Projective Motion Path. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1603–1618. [Google Scholar]
- Duong, V.H. Processing and Application of ICESat Large Footprint Full Waveform Laser Range Data. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 8 June 2010. [Google Scholar]
- Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. ISPRS J. Photogramm. Remote Sens. 2009, 64, 1–16. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797. [Google Scholar]
- Silva, C.A.; Saatchi, S.; Garcia, M.; Labriere, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.; White, L.; et al. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study from Central Gabon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3512–3526. [Google Scholar] [CrossRef]
Beam Type | Ground Track | Laser Shots | Surface Slope (°) | Elevation (m) |
---|---|---|---|---|
Splitting beam | BEAM 0010 | 286 | 1.59~45.09 | 1785.9~2828.1 |
Splitting beam | BEAM 0011 | 291 | 2.28~41.60 | 1844.0~2787.4 |
Full-power beam | BEAM 0101 | 279 | 1.37~42.85 | 1918.7~2660.5 |
Full-power beam | BEAM 0110 | 296 | 1.36~63.15 | 1842.7~2876.2 |
Footprint Number | COC | Total Bias | ||
---|---|---|---|---|
TRW vs. Pseudo Waveform | Received Waveform vs. Pseudo-Waveform | TRW vs. Pseudo Waveform | Received Waveform vs. Pseudo-Waveform | |
60 | 0.94 | 0.89 | 0.0890 | 0.2623 |
70 | 0.97 | 0.94 | 0.0626 | 0.2710 |
92 | 0.94 | 0.90 | 0.0668 | 0.3060 |
119 | 0.95 | 0.93 | 0.0863 | 0.2512 |
123 | 0.94 | 0.82 | 0.0781 | 0.3858 |
156 | 0.93 | 0.87 | 0.1005 | 0.2879 |
166 | 0.94 | 0.90 | 0.0989 | 0.2704 |
180 | 0.94 | 0.91 | 0.1042 | 0.2676 |
244 | 0.96 | 0.93 | 0.0644 | 0.2417 |
Metrics | COC | Total Bias | RMSE |
---|---|---|---|
Maximum | 0.99 | 0.2351 | 0.0310 |
Mean | 0.92 | 0.0813 | 0.0016 |
Minimum | 0.29 | 0.0096 | 0.0006 |
Beam | Method | COC | MB (m) | RMSE (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25% | 50% | 75% | 95% | 25% | 50% | 75% | 95% | 25% | 50% | 75% | 95% | ||
Splitting beam | GD | 0.17 | 0.72 | 0.74 | 0.82 | 4.57 | 4.91 | 5.04 | 5.23 | 5.82 | 6.27 | 6.50 | 6.80 |
SWM | 0.18 | 0.60 | 0.58 | 0.61 | 2.25 | 3.42 | 5.16 | 7.71 | 2.89 | 4.38 | 6.36 | 9.29 | |
TRW | 0.18 | 0.74 | 0.81 | 0.88 | 2.03 | 2.20 | 2.49 | 2.95 | 2.68 | 2.94 | 3.35 | 3.93 | |
Full-power beam | GD | 0.42 | 0.82 | 0.87 | 0.92 | 3.05 | 3.18 | 3.28 | 3.39 | 3.91 | 4.07 | 4.15 | 4.24 |
SWM | 0.49 | 0.78 | 0.57 | 0.57 | 1.84 | 3.07 | 4.67 | 7.29 | 2.53 | 4.12 | 6.04 | 9.09 | |
TRW | 0.43 | 0.79 | 0.85 | 0.91 | 1.95 | 2.02 | 2.04 | 2.14 | 2.60 | 2.73 | 2.69 | 2.85 |
Energy Percentile | 25% | 50% | 75% | 95% | |
---|---|---|---|---|---|
Difference for derived height percentile (m) | GD method | 6.32 | 7.53 | 9.62 | 12.02 |
Difference for renewed height percentile (m) | −0.87 | 0.67 | 1.42 | 2.82 | |
Difference for derived height percentile (m) | Proposed method | 1.64 | 2.84 | 5.54 | 4.79 |
Difference for renewed height percentile (m) | 0.27 | −0.06 | 0.63 | 0.42 |
Method | COC | MB (m) | RMSE (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25% | 50% | 75% | 95% | 25% | 50% | 75% | 95% | 25% | 50% | 75% | 95% | |
GD | 0.69 | 0.92 | 0.97 | 0.97 | 1.47 | 1.31 | 1.40 | 1.56 | 1.73 | 1.53 | 1.85 | 2.16 |
Proposed | 0.72 | 0.92 | 0.97 | 0.97 | 1.12 | 1.06 | 1.15 | 1.30 | 1.32 | 1.25 | 1.58 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Zhou, H.; Wang, H.; Ma, Y.; Zhang, Q.; Li, S. Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar. Remote Sens. 2024, 16, 425. https://doi.org/10.3390/rs16020425
Song H, Zhou H, Wang H, Ma Y, Zhang Q, Li S. Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar. Remote Sensing. 2024; 16(2):425. https://doi.org/10.3390/rs16020425
Chicago/Turabian StyleSong, Hao, Hui Zhou, Heng Wang, Yue Ma, Qianyin Zhang, and Song Li. 2024. "Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar" Remote Sensing 16, no. 2: 425. https://doi.org/10.3390/rs16020425
APA StyleSong, H., Zhou, H., Wang, H., Ma, Y., Zhang, Q., & Li, S. (2024). Retrieval of Tree Height Percentiles over Rugged Mountain Areas via Target Response Waveform of Satellite Lidar. Remote Sensing, 16(2), 425. https://doi.org/10.3390/rs16020425