Dynamic Earthquake-Induced Landslide Susceptibility Assessment Model: Integrating Machine Learning and Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Overview
2.2.1. EQIL Inventories
2.2.2. Influencing Factors
2.2.3. Remote Sensing Images and Other Data
2.3. Overview of the Approach
2.4. Pre-Trained Model for Preliminary Results
- (1)
- Random Forest (RF): The random forest is a typical Bagging-based ensemble model that consists of several decision trees as basic units and synthesizes these homogeneous weak classifiers with certain rules to form a strong classifier [36].
- (2)
- Deep Forest (DF): Deep forest is also known as gcForest (Multi-Grained Cascade Forest); it is similar to the idea of neural networks but has lower requirements for hyperparameters, and the complexity of the model can be adaptive and extensible [60].
- (3)
- Gradient Boosting Decision Tree (GBDT): It takes a decision tree as its basic unit; the core idea is to use the value of the negative gradient of the loss function in the current model as the approximate value of the residual, so that the loss function can be rapidly reduced.
- (4)
- eXtreme Gradient Boosting (XGBoost): XGBoost is further modified based on the GBDT model. These optimizations help prevent overfitting and improve generalization ability [61].
2.5. Spatial Distribution Similarity Comparison
3. Results
3.1. Immediate EQIL Susceptibility Assessment and Model Selection
3.2. Near-Real-Time Model Optimization Integrating Remote Sensing Interpretation
3.3. Localization Model Reconstruction Based on New EQIL Inventory
4. Discussion
4.1. The Jishishan Earthquake May Raise the Possibility of Landslides
4.2. Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; Juang, C.H.; Wasowski, J.; Huang, R.; Xu, Q.; Scaringi, G.; van Westen, C.J.; Havenith, H.-B. What We Have Learned from the 2008 Wenchuan Earthquake and Its Aftermath: A Decade of Research and Challenges. Eng. Geol. 2018, 241, 25–32. [Google Scholar] [CrossRef]
- Deng, Q.D.; Cheng, S.-P.; Ma, J.; Du, P. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chin. J. Geophys. 2014, 57, 2025–2042. [Google Scholar] [CrossRef]
- Zhao, B.; Su, L.; Xu, Q.; Li, W.; Xu, C.; Wang, Y. A Review of Recent Earthquake-Induced Landslides on the Tibetan Plateau. Earth-Sci. Rev. 2023, 244, 104534. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Robinson, T.R.; Rosser, N.J.; Densmore, A.L.; Williams, J.G.; Kincey, M.E.; Benjamin, J.; Bell, H.J.A. Rapid Post-Earthquake Modelling of Coseismic Landslide Intensity and Distribution for Emergency Response Decision Support. Nat. Hazards Earth Syst. Sci. 2017, 17, 1521–1540. [Google Scholar] [CrossRef]
- Humanitarian Programme Cycle. Available online: https://kmp.hpc.tools/ (accessed on 2 August 2024).
- Heleno, S.; Matias, M.; Pina, P.; Sousa, A.J. Semiautomated Object-Based Classification of Rain-Induced Landslides with VHR Multispectral Images on Madeira Island. Nat. Hazards Earth Syst. Sci. 2016, 16, 1035–1048. [Google Scholar] [CrossRef]
- Burrows, K.; Milledge, D.; Walters, R.J.; Bellugi, D. Integrating Empirical Models and Satellite Radar Can Improve Landslide Detection for Emergency Response. Nat. Hazards Earth Syst. Sci. 2021, 21, 2993–3014. [Google Scholar] [CrossRef]
- Shao, X.; Xu, C. Earthquake-Induced Landslides Susceptibility Assessment: A Review of the State-of-the-Art. Nat. Hazards Res. 2022, 2, 172–182. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of Earthquakes on Dams and Embankments. Géotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef]
- Bray Jonathan, D.; Travasarou, T. Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements. J. Geotech. Geoenviron. Eng. 2007, 133, 381–392. [Google Scholar] [CrossRef]
- Huang, M.; Fan, X.; Wang, H. Three-Dimensional Upper Bound Stability Analysis of Slopes with Weak Interlayer Based on Rotational-Translational Mechanisms. Eng. Geol. 2017, 223, 82–91. [Google Scholar] [CrossRef]
- Dreyfus, D.; Rathje, E.M.; Jibson, R.W. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Eng. Geol. 2013, 163, 41–54. [Google Scholar] [CrossRef]
- Gallen, S.F.; Clark, M.K.; Godt, J.W.; Roback, K.; Niemi, N.A. Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015 Mw 7.8 Gorkha Earthquake, Nepal. Tectonophysics 2017, 714–715, 173–187. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Michael, J.A. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Eng. Geol. 2000, 58, 271–289. [Google Scholar] [CrossRef]
- Wang, T.; Wu, S.; Shi, J.; Xin, P. Case Study On Rapid Assessment of Regional Seismic Landslide Hazard Based On Simplified Newmark Displacement Model: Wenchuan Ms 8.0 Earthquake. J. Eng. Geol. 2013, 21, 16–24. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Kutlug Sahin, E.; Colkesen, I. An Assessment of Multivariate and Bivariate Approaches in Landslide Susceptibility Mapping: A Case Study of Duzkoy District. Nat. Hazards 2015, 76, 471–496. [Google Scholar] [CrossRef]
- Jessee, M.A.N.; Hamburger, M.W.; Allstadt, K.; Wald, D.J.; Robeson, S.M.; Tanyas, H.; Hearne, M.; Thompson, E.M. A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides. J. Geophys. Res.-Earth Surf. 2018, 123, 1835–1859. [Google Scholar] [CrossRef]
- Nowicki, M.A.; Wald, D.J.; Hamburger, M.W.; Hearne, M.; Thompson, E.M. Development of a Globally Applicable Model for near Real-Time Prediction of Seismically Induced Landslides. Eng. Geol. 2014, 173, 54–65. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Kritikos, T.; Robinson, T.R.; Davies, T.R.H. Regional Coseismic Landslide Hazard Assessment without Historical Landslide Inventories: A New Approach. J. Geophys. Res. Earth Surf. 2015, 120, 711–729. [Google Scholar] [CrossRef]
- Tanyas, H.; Rossi, M.; Alvioli, M.; van Westen, C.J.; Marchesini, I. A Global Slope Unit-Based Method for the near Real-Time Prediction of Earthquake-Induced Landslides. Geomorphology 2019, 327, 126–146. [Google Scholar] [CrossRef]
- Cui, Y.; Bao, P.; Xu, C.; Ma, S.; Zheng, J.; Fu, G. Landslides Triggered by the 6 September 2018 Mw 6.6 Hokkaido, Japan: An Updated Inventory and Retrospective Hazard Assessment. Earth Sci. Inf. 2021, 14, 247–258. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A Comparative Study of Logistic Model Tree, Random Forest, and Classification and Regression Tree Models for Spatial Prediction of Landslide Susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Siva Subramanian, S.; Xu, Q.; Huang, R. Rapidly Evolving Controls of Landslides After a Strong Earthquake and Implications for Hazard Assessments. Geophys. Res. Lett. 2021, 48, e2020GL090509. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Liu, K. Rapidly Assessing Earthquake-Induced Landslide Susceptibility on a Global Scale Using Random Forest. Geomorphology 2021, 391, 107889. [Google Scholar] [CrossRef]
- Luo, X.; Ma, Q.; Niu, F.; Su, W.; Hu, H. Experimental and Numerical Analyses of Freezing Behavior of an Embankment in Cold Regions. Math. Probl. Eng. 2019, 2019, 1437904. [Google Scholar] [CrossRef]
- Achu, A.L.; Aju, C.D.; Di Napoli, M.; Prakash, P.; Gopinath, G.; Shaji, E.; Chandra, V. Machine-Learning Based Landslide Susceptibility Modelling with Emphasis on Uncertainty Analysis. Geosci. Front. 2023, 14, 101657. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine Learning Ensemble Modelling as a Tool to Improve Landslide Susceptibility Mapping Reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Jibson, R.W. Regression Models for Estimating Coseismic Landslide Displacement. Eng. Geol. 2007, 91, 209–218. [Google Scholar] [CrossRef]
- Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping. Math. Geosci. 2014, 46, 33–57. [Google Scholar] [CrossRef]
- Robinson, T.R.; Rosser, N.; Walters, R.J. The Spatial and Temporal Influence of Cloud Cover on Satellite-Based Emergency Mapping of Earthquake Disasters. Sci. Rep. 2019, 9, 12455. [Google Scholar] [CrossRef]
- Burrows, K.; Walters, R.J.; Milledge, D.; Densmore, A.L. A Systematic Exploration of Satellite Radar Coherence Methods for Rapid Landslide Detection. Nat. Hazards Earth Syst. Sci. 2020, 20, 3197–3214. [Google Scholar] [CrossRef]
- Burrows, K.; Walters, R.J.; Milledge, D.; Spaans, K.; Densmore, A.L. A New Method for Large-Scale Landslide Classification from Satellite Radar. Remote Sens. 2019, 11, 237. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Shyu, J.B.H.; Zheng, W.; Min, W. Landslides Triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 Earthquake: Inventory Compiling and Spatial Distribution Analysis. J. Asian Earth Sci. 2014, 92, 125–142. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, C.; Li, T.; Xu, C.; He, X.; Shao, X.; Xu, X.; Zhan, T.; Chen, Z. An Open-Accessed Inventory of Landslides Triggered by the MS 6.8 Luding Earthquake, China on September 5, 2022. Earthq. Res. Adv. 2023, 3, 100181. [Google Scholar] [CrossRef]
- Zhao, B.; Li, W.; Su, L.; Wang, Y.; Wu, H. Insights into the Landslides Triggered by the 2022 Lushan Ms 6.1 Earthquake: Spatial Distribution and Controls. Remote Sens. 2022, 14, 4365. [Google Scholar] [CrossRef]
- Konishi, T.; Suga, Y. Landslide Detection Using COSMO-SkyMed Images: A Case Study of a Landslide Event on Kii Peninsula, Japan. Eur. J. Remote Sens. 2018, 51, 205–221. [Google Scholar] [CrossRef]
- Yun, S.-H.; Hudnut, K.; Owen, S.; Webb, F.; Simons, M.; Sacco, P.; Gurrola, E.; Manipon, G.; Liang, C.; Fielding, E.; et al. Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites. Seismol. Res. Lett. 2015, 86, 1549–1556. [Google Scholar] [CrossRef]
- Han, G.; Dai, D.; Li, Y.; Xi, N.; Sun, L. Rapid Report of the December 18, 2023 MS 6.2 Jishishan Earthquake, Gansu, China. Earthq. Res. Adv. 2024, 4, 100287. [Google Scholar] [CrossRef]
- Chen, B.; Song, C.; Chen, Y.; Li, Z.; Yu, C.; Liu, H.; Jiang, H.; Liu, Z.; Cai, X.; Nai, Y.; et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake. Geomat. Inf. Sci. Wuhan Univ. 2024, 1–26. [Google Scholar] [CrossRef]
- Liu, Z.; Han, B.; Nai, Y.; Li, Z.; Yu, C.; Song, C.; Chen, B.; Zhao, L.; Zahng, X.; Peng, J. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations. Geomat. Inf. Sci. Wuhan Univ. 2024, 1–13. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Tian, Q.; Xia, Y.; Zhang, J.; Yao, S.; Huang, W. Study on the Relationship between Paleoseismic on Laji Mountain Fault and Catastrophic Event on Lajiashan Site. J. Seismol. Res. 2014, 37, 109–115. [Google Scholar]
- Wang, L.; Hou, S.; Dong, Y.; Tie, Y.; Zhang, M.; Yang, X.; Xiao, R.; Liu, M.; Feng, Z.; Zhang, Y.; et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control. Chin. J. Geol. Hazard Control 2024, 35, 108–118. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Shyu, J.B.H. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013. Geomorphology 2015, 248, 77–92. [Google Scholar] [CrossRef]
- Tanyas, H.; van Westen, C.J.; Allstadt, K.E.; Jessee, M.A.N.; Gorum, T.; Jibson, R.W.; Godt, J.W.; Sato, H.P.; Schmitt, R.G.; Marc, O.; et al. Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories. J. Geophys. Res.-Earth Surf. 2017, 122, 1991–2015. [Google Scholar] [CrossRef]
- Deng, Q. Active Structure Map of China (1:400,000)(with CD); Earthquake Press: Beijing, China, 2007. [Google Scholar]
- Dijkshoorn, K.; van Engelen, V.; Huting, J. Soil and Landform Properties for LADA Partner Countries (Argentina, China, Cuba, Senegal and The Gambia, South Africa and Tunisia); ISRIC report 2008/06 and GLADA report 2008/03; ISRIC—World Soil Information and FAO: Wageningen, The Netherlands, 2008. [Google Scholar]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A High-Accuracy Map of Global Terrain Elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- China Geological Survey Xi’an Geological Survey Center; China Natural Resources Inspector Xi’an Bureau. Atlas of Natural Resources in the Middle and Upper Yellow River Basin of China; Xi’an Bureau, State Natural Resources Inspector: Xi’an, China; China University of Geosciences Press: Wuhan, China, 2021; ISBN 978-7-5625-5061-7.
- Zeng, T.; Wu, L.; Peduto, D.; Glade, T.; Hayakawa, Y.S.; Yin, K. Ensemble Learning Framework for Landslide Susceptibility Mapping: Different Basic Classifier and Ensemble Strategy. Geosci. Front. 2023, 14, 101645. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Feng, J. Deep Forest. Natl. Sci. Rev. 2019, 6, 74–86. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Huang, Y.; Zhao, L. Review on Landslide Susceptibility Mapping Using Support Vector Machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of Heuristic, General Statistical and Machine Learning Models for Landslide Susceptibility Prediction and Mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Lin, G.; Chang, M.; Huang, Y.; Ho, J. Assessment of Susceptibility to Rainfall-Induced Landslides Using Improved Self-Organizing Linear Output Map, Support Vector Machine, and Logistic Regression. Eng. Geol. 2017, 224, 62–74. [Google Scholar] [CrossRef]
- Rother, C.; Minka, T.; Blake, A.; Kolmogorov, V. Cosegmentation of Image Pairs by Histogram Matching—Incorporating a Global Constraint into MRFs. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 993–1000. [Google Scholar]
- Nguyen, H.V.; Bai, L. Cosine Similarity Metric Learning for Face Verification. In Proceedings of the Computer Vision—ACCV 2010; Kimmel, R., Klette, R., Sugimoto, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 709–720. [Google Scholar]
- Gonzalez, R.; Woods, R. Digital Image Processing: Global Edition; Pearson Deutschland: Munich, Germany, 2017; ISBN 978-1-292-22304-9. [Google Scholar]
- Wang, Z.; Liu, J.; Che, X.; Wang, Y.; Du, K. Research on map similarity matching method based on convolutional neural network. Sci. Surv. Mapp. 2022, 47, 169–175. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.; Cai, B. Comparison of Image Similarity Algorithms Based on Traditional Methods and Deep Learning Methods. Comput. Syst. Appl. 2024, 33, 253–264. [Google Scholar] [CrossRef]
- Xian, Y.; Wei, X.; Zhou, H.; Chen, N.; Liu, Y.; Liu, F.; Sun, H. Snowmelt-Triggered Reactivation of a Loess Landslide in Yili, Xinjiang, China: Mode and Mechanism. Landslides 2022, 19, 1843–1860. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Zhang, M.; Jiang, F. Advances in the Study of the 400 Mm Isohyet Migrations and Wetness and Dryness Changes on the Chinese Mainland. Adv. Earth Sci. 2020, 35, 1101. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, P.; Li, R.; Wang, F. Preliminary Investigation on a Catastrophic Loess Landslide Induced by Heavy Rainfall on 1 September 2022 in Qinghai, China. Landslides 2023, 20, 1553–1559. [Google Scholar] [CrossRef]
- Stamatopoulos, C.A.; Protopapas, A.L. Analytical Solutions for the Sliding Displacement of Model Slopes Simulating Both the Frictional and Rotational Effects under Piecewise Linear Acceleration Pulses. Earthq. Eng. Struct. Dyn. 2023, 52, 4733–4753. [Google Scholar] [CrossRef]
- Gallen, S.F.; Clark, M.K.; Godt, J.W. Coseismic Landslides Reveal Near-Surface Rock Strength in a High-Relief, Tectonically Active Setting. Geology 2015, 43, 11–14. [Google Scholar] [CrossRef]
Groups | Factors | Source | Spatial Resolution |
---|---|---|---|
Seismic | PGA | USGS ShakeMap (https:/earthquake.usgs.gov/data/shakemap, accessed on 19 December 2023) | Vector Data |
PGV | Vector Data | ||
MMI | Vector Data | ||
Geology and soil | Distance to fault | Calculated based on active structure map of China [53] | Vector Data |
Soil texture | ISRIC-Soil and landform properties for LADA partner countries [54] | Vector Data | |
Lithology | Vector Data | ||
Topography | Elevation (DEM) | STRM (http://srtm.csi.cgiar.org, accessed on 23 February 2023) | 30 m |
Slope | Calculated based on DEM | 30 m | |
Plan curvature | |||
Profile curvature | |||
Local relief | |||
VRM | |||
Hydrology | HAND | MERIT Hydro: global hydrography datasets [55,56] | 90 m |
Distance to stream | Calculated based on MERIT Hydro | Vector Data | |
TWI | Calculated based on DEM | 90 m | |
Environmental | Distance to road | Calculated based on roads data from OSM (http://www.openstreetmap.org, accessed on 3 August 2023) | Vector Data |
NDVI | MOD13A3 (http://doi.org/10.5067/MODIS/MOD13A3.006, accessed on 19 December 2023) | 1 km | |
LULC | GLC_FCS30 [57] | 30 m |
Random Forest | Deep Forest | GBDT | XGBoost | Mean | |
---|---|---|---|---|---|
Total samples | 0.677 | 0.681 | 0.696 | 0.698 | 0.688 |
Equal samples | 0.670 | 0.680 | 0.692 | 0.698 | 0.685 |
Dingxi samples | 0.687 | 0.683 | 0.713 | 0.724 | 0.702 |
Mean | 0.678 | 0.681 | 0.700 | 0.707 |
Random Forest | Deep Forest | GBDT | XGBoost | Mean | |
---|---|---|---|---|---|
Total samples | 0.875 | 0.885 | 0.871 | 0.864 | 0.874 |
Equal samples | 0.877 | 0.882 | 0.862 | 0.842 | 0.866 |
Dingxi samples | 0.867 | 0.872 | 0.865 | 0.874 | 0.870 |
Mean | 0.873 | 0.880 | 0.866 | 0.860 |
Model—Training Samples | Model Type | AUC | ACC |
---|---|---|---|
Random Forest—Jishishan | Localization model | 0.989 | 0.959 |
Deep Forest—Jishishan | Localization model | 0.991 | 0.967 |
GBDT—Jishishan | Localization model | 0.962 | 0.918 |
XGBoost—Jishishan | Localization model | 0.985 | 0.957 |
Random Forest—Equal samples | Updated model | 0.964 | 0.911 |
XGBoost—Equal samples | Updated model | 0.957 | 0.904 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wu, J.; Wang, L.; Ya, R.; Tang, R. Dynamic Earthquake-Induced Landslide Susceptibility Assessment Model: Integrating Machine Learning and Remote Sensing. Remote Sens. 2024, 16, 4006. https://doi.org/10.3390/rs16214006
Yang Y, Wu J, Wang L, Ya R, Tang R. Dynamic Earthquake-Induced Landslide Susceptibility Assessment Model: Integrating Machine Learning and Remote Sensing. Remote Sensing. 2024; 16(21):4006. https://doi.org/10.3390/rs16214006
Chicago/Turabian StyleYang, Youtian, Jidong Wu, Lili Wang, Ru Ya, and Rumei Tang. 2024. "Dynamic Earthquake-Induced Landslide Susceptibility Assessment Model: Integrating Machine Learning and Remote Sensing" Remote Sensing 16, no. 21: 4006. https://doi.org/10.3390/rs16214006
APA StyleYang, Y., Wu, J., Wang, L., Ya, R., & Tang, R. (2024). Dynamic Earthquake-Induced Landslide Susceptibility Assessment Model: Integrating Machine Learning and Remote Sensing. Remote Sensing, 16(21), 4006. https://doi.org/10.3390/rs16214006