Constructing Soil–Landscape Units Based on Slope Position and Land Use to Improve Soil Prediction Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Research Methodology
2.2.1. Geomorphons Landform Classification Method
2.2.2. TPI-Based Landform Classification Method—Landforms
2.2.3. Landform Classification Method Based on RSP and Elevation
- Calculate the RSP
- b.
- Landform classification-based RSP
- c.
- Landform classification-based RSP and elevation
2.2.4. Soil–Landscape Units Construction
2.2.5. Modeling and Validation Methods
3. Results and Analysis
3.1. Landform Classification Based on Different Methods
3.2. Soil–Landscape Units Distribution Maps
3.3. Correlation Analysis of Different Landform Classification Methods with Soil
3.4. SOC and Soil Type Modeling Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Staff, S.S.D. Soil Survey Manual; United States Department of Agriculture: Washington, DC, USA, 1993. [Google Scholar]
- ДОКУЧАЕВ, В.В. Русский чернoзем; Императoрскoе Вoльнoе экoн. o-вo: С. Петербургь, Russia, 1883; pp. 1–640. [Google Scholar]
- Milne, G. Some suggested units of classification and mapping, particularly for East African soils. Soil Res. 1935, 4, 183–198. [Google Scholar]
- Milne, G. Normal erosion as a factor in soil profile development. Nature 1936, 138, 548–549. [Google Scholar] [CrossRef]
- Jenny, H. Factors of soil formation: A system of quantitative pedology/Hans Jenny. Soil Sci. 1941, 52, 415. [Google Scholar] [CrossRef]
- Wood, A. The development of hillside slopes. Geol. Assoc. Proc. 1942, 33, 128–138. [Google Scholar] [CrossRef]
- Ruhe, R.V. Transactions of the 7th International Congress of Soil Science. Elem. Soil Landsc. 1960, 165–169. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Tagil, S.; Jenness, J. GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J. Appl. Sci. 2008, 8, 910–921. [Google Scholar] [CrossRef]
- Hengl, T.; Maathuis, B.H.P.; Wang, L. Chapter 13 Geomorphometry in ILWIS. In Geomorphometry-Concepts, Software, Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 309–331. [Google Scholar]
- Drăguţ, L.; Blaschke, T. Automated classification of landform elements using object-based image analysis. Geomorphology 2006, 81, 330–344. [Google Scholar] [CrossRef]
- Hofierka, J.; Mitášová, H.; Neteler, M. Chapter 17 Geomorphometry in GRASS GIS. In Geomorphometry-Concepts, Software, Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 387–410. [Google Scholar]
- Olaya, V.; Conrad, O. Chapter 12 Geomorphometry in SAGA. In Geomorphometry-Concepts, Software, Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 293–308. [Google Scholar]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Topographic Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Libohova, Z.; Winzeler, H.E.; Lee, B.; Schoeneberger, P.J.; Datta, J.; Owens, P.R. Geomorphons: Landform and property predictions in a glacial moraine in Indiana landscapes. Catena 2016, 142, 66–76. [Google Scholar] [CrossRef]
- Ngunjiri, M.W.; Libohova, Z.; Owens, P.R.; Schulze, D.G. Landform pattern recognition and classification for predicting soil types of the Uasin Gishu Plateau, Kenya. Catena 2020, 188, 104390. [Google Scholar] [CrossRef]
- Cheng, W.; Zhou, C.; Chai, H.; Zhao, S.; Liu, H.; Zhou, Z. Research and compilation of the geomorphologic atlas of the People’s Republic of China (1:1,000,000). J. Geogr. Sci. 2011, 21, 89–100. [Google Scholar] [CrossRef]
- MacMillan, R.A.; Shary, P.A. Chapter 9 Landforms and Landform Elements in Geomorphometry. In Geomorphometry-Concepts, Software, Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 227–254. [Google Scholar]
- Skidmore, A.K. Terrain position as mapped from a gridded digital elevation model. Int. J. Geogr. Inf. Syst. 2007, 4, 33–49. [Google Scholar] [CrossRef]
- Atkinson, J.; de Clercq, W.; Rozanov, A. Multi-resolution soil-landscape characterisation in KwaZulu Natal: Using geomorphons to classify local soilscapes for improved digital geomorphological modelling. Geoderma Reg. 2020, 22, e00291. [Google Scholar] [CrossRef]
- Veronesi, F.; Hurni, L. Random Forest with semantic tie points for classifying landforms and creating rigorous shaded relief representations. Geomorphology 2014, 224, 152–160. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Seydi, S.T.; Ahmadi, S.A.; Ghorbanian, A.; Amani, M. Land Cover Mapping in a Mangrove Ecosystem Using Hybrid Selective Kernel-Based Convolutional Neural Networks and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2024, 16, 2849. [Google Scholar] [CrossRef]
- Zhu, Q.; Lei, Y.; Sun, X.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Knowledge-guided land pattern depiction for urban land use mapping: A case study of Chinese cities. Remote Sens. Environ. 2022, 272, 112916. [Google Scholar] [CrossRef]
- He, H.; Liang, T.; Hu, D.; Yu, X. Remote sensing clustering analysis based on object-based interval modeling. Comput. Geosci. 2016, 94, 131–139. [Google Scholar] [CrossRef]
- Gruber, F.E.; Baruck, J.; Geitner, C. Algorithms vs. surveyors: A comparison of automated landform delineations and surveyed topographic positions from soil mapping in an Alpine environment. Geoderma 2017, 308, 9–25. [Google Scholar] [CrossRef]
- Lindsay, J.B.; Cockburn, J.M.H.; Russell, H.A.J. An integral image approach to performing multi-scale topographic position analysis. Geomorphology 2015, 245, 51–61. [Google Scholar] [CrossRef]
- Maynard, J.J.; Johnson, M.G. Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent. Geoderma 2014, 230–231, 29–40. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, F.; Li, C.; Yan, Y.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Extracting Typical Samples Based on Image Environmental Factors to Obtain an Accurate and High-Resolution Soil Type Map. Remote Sens. 2024, 16, 1128. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, Y.; Zhu, F.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Digital Mapping of Soil Organic Carbon Based on Machine Learning and Regression Kriging. Sensors 2022, 22, 8997. [Google Scholar] [CrossRef]
- Amirian-Chakan, A.; Minasny, B.; Taghizadeh-Mehrjardi, R.; Akbarifazli, R.; Darvishpasand, Z.; Khordehbin, S. Some practical aspects of predicting texture data in digital soil mapping. Soil Tillage Res. 2019, 194, 104289. [Google Scholar] [CrossRef]
- Long, J.; Li, J.; Huang, Q.; Qiu, L.X.; Lu, L.M.; Bian, A.A.; Zhu, L.X.; Li, H.H.; Qian, X.J.; Xing, S.H.; et al. Effects of raster resolution on quantifying farmland soil organic carbon stock in various landforms of a complex topography, China. Geoderma Reg. 2023, 34, e00668. [Google Scholar] [CrossRef]
- Flynn, T.; de Clercq, W.; Rozanov, A.; Clarke, C. High-resolution digital soil mapping of multiple soil properties: An alternative to the traditional field survey? S. Afr. J. Plant Soil 2019, 36, 237–247. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef] [PubMed]
- Gawrysiak, L.; Kociuba, W. Application of geomorphons for analysing changes in the morphology of a proglacial valley (case study: The Scott River, SW Svalbard). Geomorphology 2020, 371, 107449. [Google Scholar] [CrossRef]
- Flynn, T.; Rozanov, A.; Ellis, F.; de Clercq, W.; Clarke, C. Farm-scale soil patterns derived from automated terrain classification. Catena 2020, 185, 104311. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Faria, W.M.; Poggere, G.C.; Barbosa, J.Z.; Guilherme, L.R.G.; Curi, N. Proximal sensing applied to soil texture prediction and mapping in Brazil. Geoderma Reg. 2020, 23, e00321. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, Y.; Yang, H.; Yang, Y.; Wu, Z. Effects of different particle sizes on the spectral prediction of soil organic matter. Catena 2021, 196, 104933. [Google Scholar] [CrossRef]
- Machado, D.F.T.; de Menezes, M.D.; Silva, S.H.G.; Curi, N. Transferability, accuracy, and uncertainty assessment of different knowledge-based approaches for soil types mapping. Catena 2019, 182, 104134. [Google Scholar] [CrossRef]
- Dobos, E.; Hengl, T. Chapter 20 Soil Mapping Applications. In Geomorphometry-Concepts, Software, Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; pp. 461–479. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
Class | Description | Breakpoints |
---|---|---|
1 | Flat-valley | RSP < 0.20 |
2 | Foot-slope | RSP ≥ 0.20, RSP < 0.46 |
3 | Mid-slope | RSP ≥ 0.46, RSP < 0.73 |
4 | Low top-slope | RSP ≥ 0.73, Elevation < 70 m |
5 | High top-slope | RSP ≥ 0.73, Elevation ≥ 70 m |
Landform/Landscape | Mutual Information |
---|---|
GM1t | 0.083 |
GM3t | 0.142 |
GM5t | 0.119 |
LF100 | 0.196 |
LF300 | 0.204 |
LF500 | 0.197 |
TFs4 | 0.273 |
TF | 0.347 |
LU | 0.683 |
SL | 0.822 |
Landform/Landscape | Analysis of Variance | |
---|---|---|
F | p | |
GM1t | 3.05 | 0.0512 |
GM3t | 1.15 | 0.332 |
GM5t | 1.91 | 0.132 |
LF100 | 7.71 | 0.0002 |
LF300 | 6.84 | 0.0003 |
LF500 | 3.26 | 0.0242 |
TFs4 | 3.03 | 0.0326 |
TF | 6.84 | 0.00006 |
LU | 20.61 | 2.40 × 10−8 |
SL | 6.05 | 6.79 × 10−8 |
Landform/Landscape | Calibration Set | Validation Set | ||
---|---|---|---|---|
Accuracy | Kappa | Accuracy | Kappa | |
TFs4 | 0.66 | 0.45 | 0.62 | 0.42 |
TF | 0.68 | 0.49 | 0.66 | 0.48 |
GM3t | 0.66 | 0.46 | 0.56 | 0.33 |
LF300 | 0.66 | 0.46 | 0.66 | 0.48 |
SL | 0.78 | 0.66 | 0.78 | 0.66 |
Landform/Landscape | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|
RMSE | R2 | MAE | RMSE | R2 | MAE | |
TFs4 | 2.72 | 0.47 | 2.20 | 3.23 | 0.01 | 2.55 |
TF | 2.62 | 0.49 | 2.16 | 2.81 | 0.23 | 2.33 |
GM1t | 2.94 | 0.41 | 2.34 | 3.20 | 0.01 | 2.59 |
LF100 | 2.93 | 0.36 | 2.32 | 2.95 | 0.24 | 2.45 |
SL | 2.50 | 0.49 | 2.02 | 2.30 | 0.50 | 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Zhu, F.; Li, C.; Lu, W.; Fang, Z.; Li, Z.; Pan, J. Constructing Soil–Landscape Units Based on Slope Position and Land Use to Improve Soil Prediction Accuracy. Remote Sens. 2024, 16, 4090. https://doi.org/10.3390/rs16214090
Zhu C, Zhu F, Li C, Lu W, Fang Z, Li Z, Pan J. Constructing Soil–Landscape Units Based on Slope Position and Land Use to Improve Soil Prediction Accuracy. Remote Sensing. 2024; 16(21):4090. https://doi.org/10.3390/rs16214090
Chicago/Turabian StyleZhu, Changda, Fubin Zhu, Cheng Li, Wenhao Lu, Zihan Fang, Zhaofu Li, and Jianjun Pan. 2024. "Constructing Soil–Landscape Units Based on Slope Position and Land Use to Improve Soil Prediction Accuracy" Remote Sensing 16, no. 21: 4090. https://doi.org/10.3390/rs16214090