Advances in Optical and Thermal Remote Sensing of Vegetative Drought and Phenology
Abstract
:1. Introduction
2. Satellite Data for Vegetative Drought Detection and Phenology Estimation
3. Detection of Vegetative Drought Using Optical and Thermal Remote Sensing
3.1. Fundamentals
3.2. Methods
3.2.1. Vegetation Condition
3.2.2. Temperature
3.2.3. Moisture
3.2.4. Evapotranspiration
3.2.5. Feature Space
4. LSP Extraction Using Optical and Thermal Remote Sensing
4.1. Fundamentals
4.2. Methods
4.2.1. VI Time Series-Based Methods
4.2.2. Cumulative Temperature Methods
5. Remote Sensing of Vegetative Drought, Considering Phenological Variability
5.1. Challenges in the Remote Sensing of Vegetative Drought and Phenology
5.1.1. Effect of Vegetation Physiological Characteristics on Drought Detection
5.1.2. Effect of Drought on Phenology
5.2. Incorporating Phenological Variability
5.3. Example Demonstration
6. Discussion and Conclusions
7. Research Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions; Routledge: London, UK, 2000. [Google Scholar]
- Cunha, A.; Alvalá, R.; Nobre, C.; Carvalho, M. Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric. For. Meteorol. 2015, 214, 494–505. [Google Scholar] [CrossRef]
- Son, N.; Chen, C.; Chang, L.; Minh, V. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Shaw, G.A.; Burke, H.K. Spectral imaging for remote sensing. Linc. Lab. J. 2003, 14, 3–28. [Google Scholar]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Qin, Q.; Wu, Z.; Zhang, T.; Sagan, V.; Zhang, Z.; Zhang, Y.; Zhang, C.; Ren, H.; Sun, Y.; Xu, W.; et al. Optical and Thermal Remote Sensing for Monitoring Agricultural Drought. Remote Sens. 2021, 13, 5092. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Xu, Z.; Cao, L.; Zhong, S.; Liu, G.; Yang, Y.; Zhu, S.; Luo, X.; Di, L. Trends in global vegetative drought from long-term satellite remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 815–826. [Google Scholar] [CrossRef]
- Zhong, S.; Di, L.; Sun, Z.; Xu, Z.; Guo, L. Investigating the Long-Term Spatial and Temporal Characteristics of Vegetative Drought in the Contiguous United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 836–848. [Google Scholar] [CrossRef]
- Shen, M.; Zhao, W.; Jiang, N.; Liu, L.; Cao, R.; Yang, W.; Zhu, X.; Wang, C.; Chen, X.; Chen, J.; et al. Challenges in remote sensing of vegetation phenology. Innov. Geosci. 2024, 2, 100070. [Google Scholar] [CrossRef]
- Henebry, G.M.; de Beurs, K.M. Remote Sensing of Land Surface Phenology: A Prospectus. In Phenology: An Integrative Environmental Science, 2nd ed.; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 385–411. [Google Scholar]
- Hanes, J.M.; Liang, L.; Jeffrey, T. Land surface phenology. In Biophysical Applications of Satellite Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 99–125. [Google Scholar]
- Wu, C.; Peng, J.; Ciais, P.; Peñuelas, J.; Wang, H.; Beguería, S.; Black, T.A.; Jassal, R.S.; Zhang, X.; Yuan, W.; et al. Increased drought effects on the phenology of autumn leaf senescence. Nat. Clim. Chang. 2022, 12, 943–949. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Y.; Cui, M.; Lu, J.; Shi, H.; Ren, H.; Zhang, W.; Wen, Z. Global Assessment of Cumulative and Time-Lag Effects of Drought on Land Surface Phenology. GISci. Remote Sens. 2022, 59, 1918–1937. [Google Scholar] [CrossRef]
- Touhami, I.; Moutahir, H.; Assoul, D.; Bergaoui, K.; Aouinti, H.; Bellot, J.; Andreu, J.M. Multi-year monitoring land surface phenology in relation to climatic variables using MODIS-NDVI time-series in Mediterranean forest, Northeast Tunisia. Acta Oecologica 2022, 114, 103804. [Google Scholar] [CrossRef]
- Uttaruk, Y.; Laosuwan, T. Drought detection by application of remote sensing technology and vegetation phenology. J. Ecol. Eng. 2017, 18, 115–121. [Google Scholar] [CrossRef]
- Li, M.; Ge, C.; Zong, S.; Wang, G. Drought Assessment on Vegetation in the Loess Plateau Using a Phenology-Based Vegetation Condition Index. Remote Sens. 2022, 14, 3043. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X. Impact of vegetation phenology changes on remote sensing-based drought monitoring. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101972. [Google Scholar]
- Meroni, M.; Fasbender, D.; Kayitakire, F.; Pini, G.; Rembold, F.; Urbano, F.; Verstraete, M. Regional drought monitoring using phenologicallytuned biomass production estimates from SPOT VEGETATION FAPAR. In 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12 August 2013; IEEE: Red Hook, NY, USA, 2013. [Google Scholar]
- Zhang, Y.; Li, W.; Huang, C. Impact of vegetation phenology on thermal-based drought monitoring using Landsat data. Remote Sens. 2019, 11, 1896. [Google Scholar]
- Wang, H.; Chen, Y.; Zhang, L. Implications of vegetation phenology for optical remote sensing of drought conditions. Agric. For. Meteorol. 2020, 280, 107800. [Google Scholar]
- Li, X.; Liu, Q.; Zhang, J. Influence of vegetation phenology on accuracy of drought monitoring based on MODIS-derived vegetation indices. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 240–248. [Google Scholar]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Pau, S.; Wolkovich, E.M.; Cook, B.I.; Davies, T.J.; Kraft, N.J.B.; Bolmgren, K.; Betancourt, J.L.; Cleland, E.E. Predicting phenology by integrating ecology, evolution and climate science. Glob. Chang. Biol. 2011, 17, 3633–3643. [Google Scholar] [CrossRef]
- Pan, Y.; Peng, D.; Chen, J.M.; Myneni, R.B.; Zhang, X.; Huete, A.R.; Fu, Y.H.; Zheng, S.; Yan, K.; Yu, L.; et al. Climate-driven land surface phenology advance is overestimated due to ignoring land cover changes. Environ. Res. Lett. 2023, 18, 044045. [Google Scholar] [CrossRef]
- Ge, Q.; Dai, J.; Cui, H.; Wang, H. Spatiotemporal Variability in Start and End of Growing Season in China Related to Climate Variability. Remote Sens. 2016, 8, 433. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; McCabe, M.F. Multi-sensor remote sensing for drought characterization: Current status, opportunities and a roadmap for the future. Remote Sens. Environ. 2021, 256, 112313. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.V.; Pham, Q.B.; Srivastava, A.K.; Bogireddy, C.; Yadav, S.M. Advancements in drought using remote sensing: Assessing progress, overcoming challenges, and exploring future opportunities. Theor. Appl. Clim. 2024, 155, 4251–4288. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Greimeister-Pfeil, I.; Preimesberger, W.; Camici, S.; Dorigo, W.; Enenkel, M.; van der Schalie, R.; Steele-Dunne, S.; Wagner, W. Microwave remote sensing for agricultural drought monitoring: Recent developments and challenges. Front. Water 2022, 4, 1045451. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Vanderhoof, M.K.; Alexander, L.; Christensen, J.; Solvik, K.; Nieuwlandt, P.; Sagehorn, M. High-frequency time series comparison of Sentinel-1 and Sentinel-2 satellites for mapping open and vegetated water across the United States (2017–2021). Remote Sens. Environ. 2023, 288, 113498. [Google Scholar] [CrossRef]
- Le, T.S.; Harper, R.; Dell, B. Application of remote sensing in detecting and monitoring water stress in forests. Remote Sens. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Wang, L.; Qu, J.J.; Hao, X. Remote sensing of fuel moisture content from canopy water indices and normalized dry matter index. J. Appl. Remote Sens. 2012, 6, 061705. [Google Scholar] [CrossRef]
- Yang, K.; Tang, B.-H.; Fu, W.; Zhou, W.; Fu, Z.; Fan, D. Estimation of Forest Canopy Fuel Moisture Content in Dali Prefecture by Combining Vegetation Indices and Canopy Radiative Transfer Models from MODIS Data. Forests 2024, 15, 614. [Google Scholar] [CrossRef]
- Rodriguez-Jimenez, F.; Lorenzo, H.; Novo, A.; Acuña-Alonso, C.; Alvarez, X. Modelling of live fuel moisture content in different vegetation scenarios during dry periods using meteorological data and spectral indices. For. Ecol. Manag. 2023, 546, 121378. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L. Modeling canopy water content for carbon estimates from MODIS data at land EOS validation sites. IGARSS 2001 Scanning the Present and Resolving the Future. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 September 2001; IEEE: Piscataway, NJ, USA, 2001. [Google Scholar]
- Colovic, M.; Stellacci, A.M.; Mzid, N.; Di Venosa, M.; Todorovic, M.; Cantore, V.; Albrizio, R. Comparative Performance of Aerial RGB vs. Ground Hyperspectral Indices for Evaluating Water and Nitrogen Status in Sweet Maize. Agronomy 2024, 14, 562. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Lu, X.; Wan, H.; Zhang, Y.; Zhang, J.; Jin, Z. Inversion of leaf water content of Cinnamomum camphora based on preferred spectral index and machine learning algorithm. Forests 2023, 14, 2285. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Bartold, M.; Wróblewski, K.; Kluczek, M.; Dąbrowska-Zielińska, K.; Goliński, P. Examining the Sensitivity of Satellite-Derived Vegetation Indices to Plant Drought Stress in Grasslands in Poland. Plants 2024, 13, 2319. [Google Scholar] [CrossRef]
- Chen, W.Y.; Xiao, Q.G.; Sheng, Y.W. Application of the anomaly vegetation index to monitoring heavy drought in 1992. Remote Sens. Environ. 1994, 9, 106–112. [Google Scholar]
- Sriwongsitanon; Gao, H.; Savenije, H.H.G.; Maekan, E.; Saengsawan, S.; Thianpopirug, S. The Normalized Difference Infrared Index (NDII) as a proxy for soil moisture storage in hydrological modelling. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 8419–8457. [Google Scholar]
- Gonnelli, A.; Carlà, R.; Baronti, S.; Raimondi, V. Near-Infrared and Short-Wavelength Infrared-Based Indices to Monitor Soil Moisture from a Satellite: A Comparative Analysis. Eng. Proc. 2023, 51, 29. [Google Scholar] [CrossRef]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Senhorelo, A.P.; de Sousa, E.F.; dos Santos, A.R.; Ferrari, J.L.; Peluzio, J.B.E.; Zanetti, S.S.; Carvalho, R.d.C.F.; Filho, C.B.C.; de Souza, K.B.; Moreira, T.R.; et al. Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil. Diversity 2023, 15, 460. [Google Scholar] [CrossRef]
- Jalayer, S.; Sharifi, A.; Abbasi-Moghadam, D.; Tariq, A.; Qin, S. Assessment of spatiotemporal characteristic of droughts using In Situ and remote sensing-based drought indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1483–1502. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, Z.; Zhao, S.; Guo, X.; Zhu, W.; Das, P. Time lag effect of vegetation response to seasonal precipitation in the Mara River Basin. Ecol. Process. 2023, 12, 49. [Google Scholar] [CrossRef]
- Song, M.; Jiang, B.; Xin, J.; Xu, L.; Huang, S.; Li, N.; Chen, X.; Hu, M. Remote Sensing Monitoring of Drought in Jilin Province of China Based on NPP-VIIRS Data. In Proceedings of the 2024 International Academic Conference on Edge Computing, Parallel and Distributed Computing, Xi’an, China, 19–21 April 2024; ACM: New York, NY, USA, 2024. [Google Scholar]
- Shuai, Y.; Duan, J.; Yang, J.; Shao, C.; Ma, X. The comparison and analysis of the surface drought monitoring model based on Xinjiang. In Proceedings of the Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), Changchun, China, 23 February 2023; SPIE: Bellingham, WA, USA, 2023. [Google Scholar]
- Yue, Z.; Mei, X.; Zhong, S. Implementation of an Automated Vegetation Drought Monitoring System Based on Long-Term Satellite Remote Sensing. In Proceedings of the 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Wuhan, China, 25–28 July 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Yue, Z.; Mei, X.; Zhong, S.; Xu, Z. Spatiotemporal Patterns and Driving Factors of Growing Season Drought on the Loess Plateau. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Hosen, M.K.; Alam, M.S.; Chakraborty, T.; Golder, M.R. Monitoring spatiotemporal and seasonal variation of agricultural drought in Bangladesh using MODIS-derived vegetation health index. J. Earth Syst. Sci. 2023, 132, 188. [Google Scholar] [CrossRef]
- Susila, K.D.; Trigunasih, N.M.; Saifulloh, M. Monitoring Agricultural Drought in Savanna Ecosystems Using the Vegetation Health Index—Implications of Climate Change. Ecol. Eng. Environ. Technol. 2024, 25, 54–67. [Google Scholar] [CrossRef]
- Jonard, F.; De Cannière, S.; Brüggemann, N.; Gentine, P.; Gianotti, D.S.; Lobet, G.; Miralles, D.; Montzka, C.; Pagán, B.; Rascher, U.; et al. Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes: Current status and challenges. Agric. For. Meteorol. 2020, 291, 108088. [Google Scholar] [CrossRef]
- Likith, M.; Harod, R.; Eswar, R. Exploring the use of satellite observations of soil moisture, solar-induced chlorophyll fluorescence and vegetation optical depth to monitor droughts across India. J. Earth Syst. Sci. 2022, 131, 94. [Google Scholar] [CrossRef]
- De Canniere, S.; Jonard, F. Satellite-Based Monitoring of Ecosystem Level Drought Using Vegetation Optical Depth and Sun-Induced Chlorophyll Fluorescence. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Ghulam, A.; Qin, Q.; Kusky, T.; Li, Z. A re-examination of perpendicular drought indices. Int. J. Remote Sens. 2008, 29, 6037–6044. [Google Scholar] [CrossRef]
- Abd El-Hamid, H.T.; Alshehri, F. Integrated remote sensing data and machine learning for drought prediction in Eastern Saudi Arabia. J. Coast. Conserv. 2023, 27, 48. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, Y. Remote Sensing Identification and the Spatiotemporal Variation of Drought Characteristics in Inner Mongolia, China. Forests 2023, 14, 1679. [Google Scholar] [CrossRef]
- Zhang, F.; Liang, Y.; Li, Q.; Hu, Z. Research on the Inversion Model of Soil Moisture Content Based on the Modified Perpendicular Drought Index in Mining Areas. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4949019 (accessed on 3 October 2024).
- Wang, F.; Li, R.; Wang, S.; Wang, H.; Shi, Y.; Zhang, Y.; Zhao, J.; Yang, J. Seasonal Drought Dynamics and the Time-Lag Effect in the MU Us Sandy Land (China) Under the Lens of Climate Change. Land 2024, 13, 307. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Safdari Molan, A.; Mardaneh, A. Investigating the Trend of Drought Changes with Temperature-Vegetation Dryness Index (TVDI) and Its Relationship with Atmospheric Factors (Case Study: Siah Kooh Watershed). J. Water Sustain. Dev. 2023, 10, 99–108. [Google Scholar]
- Yuan, Y.; Ye, X.; Liu, T.; Li, X. Drought monitoring based on temperature vegetation dryness index and its relationship with anthropogenic pressure in a subtropical humid watershed in China. Ecol. Indic. 2023, 154, 110584. [Google Scholar] [CrossRef]
- Wang, P.-X.; Li, X.-W.; Gong, J.-Y.; Song, C. Vegetation temperature condition index and its application for drought monitoring. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; IEEE: Piscataway, NJ, USA, 2001. [Google Scholar]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Neto, G.G.R.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, P.; Li, X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Moran, M.; Clarke, T.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Penot, V.; Merlin, O. Estimating the water deficit index of a Mediterranean holm oak forest from Landsat optical/thermal data: A phenomenological correction for trees casting shadow effects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5867–5880. [Google Scholar] [CrossRef]
- Gokkus, M.K.; Degirmenci, H. Comparison of Water-Yield Relations, Water Deficit Index, and Crop Water Stress Index in Silage Maize (Zea mays L.) and Sorghum (Sorghum bicolor L.). J. Agric. Sci. Technol. 2023, 25, 1403–1415. [Google Scholar]
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Walker, C. Evaluation of Atmospheric Land Exchange Inverse Model Evaporative Stress Index Utilizing Soil Climate Analysis Network Stations in Alabama. Master’s Thesis, The University of Alabama, Huntsville, Alabama, 2023. [Google Scholar]
- Getahun, Y.S.; Li, M.-H. Flash drought evaluation using evaporative stress and evaporative demand drought indices: A case study from Awash River Basin (ARB), Ethiopia. Theor. Appl. Clim. 2024, 155, 85–104. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A Remotely Sensed Global Terrestrial Drought Severity Index. Bull. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Mukhawana, M.B.; Kanyerere, T.; Kahler, D. Review of In-Situ and Remote Sensing-Based Indices and Their Applicability for Integrated Drought Monitoring in South Africa. Water 2023, 15, 240. [Google Scholar] [CrossRef]
- Yang, B.; Cui, Q.; Meng, Y.; Zhang, Z.; Hong, Z.; Hu, F.; Li, J.; Tao, C.; Wang, Z.; Zhang, W. Combined multivariate drought index for drought assessment in China from 2003 to 2020. Agric. Water Manag. 2023, 281, 108241. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Sseguya, F.; Jun, K.-S. Drought Quantification in Africa Using Remote Sensing, Gaussian Kernel, and Machine Learning. Water 2024, 16, 2656. [Google Scholar] [CrossRef]
- Korkmaz, M.; Kuriqi, A. Regional Climate Change and Drought Dynamics in Tunceli, Turkey: Insights from Drought Indices. Water Conserv. Sci. Eng. 2024, 9, 49. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Zhang, Z.; Zhang, X.; Wu, Y.; Chen, J.M. Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: Possibilities and challenges. Remote Sens. Environ. 2024, 304, 114043. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Malenovský, Z.; Magney, T.; Van Wittenberghe, S.; Fernández-Marín, B.; Maignan, F.; Zhang, Y.; Maseyk, K.; Atherton, J.; Albert, L.P.; et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 2021, 7, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef]
- Fuchs, M. Infrared measurement of canopy temperature and detection of plant water stress. Theor. Appl. Clim. 1990, 42, 253–261. [Google Scholar] [CrossRef]
- Kimes, D. Effects of vegetation canopy structure on remotely sensed canopy temperatures. Remote Sens. Environ. 1980, 10, 165–174. [Google Scholar] [CrossRef]
- Kogan, F. World droughts in the new millennium from AVHRR-based vegetation health indices. Eos 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Ångström, A. The albedo of various surfaces of ground. Geogr. Ann. 1925, 7, 323–342. [Google Scholar]
- Xue, Y.; Cracknell, A.P. Advanced thermal inertia modelling. Int. J. Remote Sens. 1995, 16, 431–446. [Google Scholar] [CrossRef]
- Price, J.C. Thermal inertia mapping: A new view of the Earth. J. Geophys. Res. 1977, 82, 2582–2590. [Google Scholar] [CrossRef]
- Scheidt, S.; Ramsey, M.; Lancaster, N. Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data. J. Geophys. Res. Earth Surf. 2010, 115, F02019. [Google Scholar] [CrossRef]
- Price, J.C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia. Remote Sens. Environ. 1985, 18, 59–73. [Google Scholar] [CrossRef]
- Watson, K.; Rowen, L.C.; Offield, T.W. Application of thermal modeling in the geologic interpretation of IR images. Remote Sens. Environ. 1971, 3, 2017–2041. [Google Scholar]
- Price, J.C. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour. Res. 1980, 16, 787–795. [Google Scholar] [CrossRef]
- Ma, C.; Wang, W.; Wu, Y.; Ouyang, B.; Zhuang, J. Inversion of soil thermal inertia in Heihe River Basin based on MODIS data. Remote Sens. Technol. Appl. 2012, 27, 197–207. [Google Scholar]
- Hardisky, M.; Klemas, V.; Smart, R. The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Zarco-Tejada, P.; Rueda, C.; Ustin, S. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003, 85, 109–124. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Verdin, J.P. Remote Sensing of Evapotranspiration for Operational Drought Monitoring Using Principles of Water and Energy Balance. In Remote Sensing of Drought: Innovative Monitoring Approaches; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Carlson, T.N.; Buffum, J. On the relationship between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1989, 30, 109–122. [Google Scholar]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Bastiaanssen, W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Bai, P. Comparison of remote sensing evapotranspiration models: Consistency, merits, and pitfalls. J. Hydrol. 2023, 617, 128856. [Google Scholar] [CrossRef]
- Anderson, M.C.; Hain, C.; Otkin, J.; Zhan, X.; Mo, K.; Svoboda, M.; Wardlow, B.; Pimstein, A. An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications. J. Hydrometeorol. 2013, 14, 1035–1056. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.-L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Zormand, S.; Jafari, R.; Koupaei, S.S. Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands. Nat. Hazards 2017, 86, 757–777. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; Liu, W.; Yuan, S.; Nie, R. Comparison of Three Theoretical Methods for Determining Dry and Wet Edges of the LST/FVC Space: Revisit of Method Physics. Remote Sens. 2017, 9, 528. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, R.; Tang, B.-H.; Wu, H.; Li, Z.-L. A Simple Method for Soil Moisture Determination From LST–VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 638–648. [Google Scholar]
- Przeździecki, K.; Zawadzki, J. Modification of the Land Surface Temperature—Vegetation Index Triangle Method for soil moisture condition estimation by using SYNOP reports. Ecol. Indic. 2020, 119, 106823. [Google Scholar] [CrossRef]
- Li, Z.-L.; Leng, P.; Zhou, C.; Chen, K.-S.; Zhou, F.-C.; Shang, G.-F. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth-Science Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Petropoulos, G.; Carlson, T.; Wooster, M.; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. Earth Environ. 2009, 33, 224–250. [Google Scholar] [CrossRef]
- Sun, H. A Two-Source Model for Estimating Evaporative Fraction (TMEF) Coupling Priestley-Taylor Formula and Two-Stage Trapezoid. Remote Sens. 2016, 8, 248. [Google Scholar] [CrossRef]
- Helman, D. Land surface phenology: What do we really ’see’ from space? Sci. Total Environ. 2018, 618, 665–673. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, L.; Li, S.; Zhang, J. Review on Vegetation Phenology Observation and Phenological Index Extraction. Adv. Earth Sci. 2016, 31, 365. [Google Scholar]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; John O’Keefe Zhang, G.; Nemani, R.R.; Van Leeuwen, W.J.D.; Van Brown, J.F. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Reed, B.C.; White, M.A. Assessing satellite-derived start-of-season measures in the conterminous USA. Int. J. Climatol. 2002, 22, 1793–1805. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Reed, B.C. Surface phenology and satellite sensor-derived onset of greenness: An initial comparison. Int. J. Remote Sens. 1999, 20, 3451–3457. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Richardson, A.D. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Glob. Chang. Biol. 2016, 22, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Badeck, F.-W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of spring phenology to climate change. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef]
- Soudani, K.; le Maire, G.; Dufrêne, E.; François, C.; Delpierre, N.; Ulrich, E.; Cecchini, S. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens. Environ. 2008, 112, 2643–2655. [Google Scholar] [CrossRef]
- Melaas, E.K.; Richardson, A.D.; Friedl, M.A.; Dragoni, D.; Gough, C.M.; Herbst, M.; Montagnani, L.; Moors, E. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems. Agric. For. Meteorol. 2013, 171–172, 46–56. [Google Scholar] [CrossRef]
- Küchler, M.; Klisz, M.; Ptach, W.; Bronisz, K. Comparison of different models for predicting spring phenology of trees. J. For. Res. 2019, 30, 823–837. [Google Scholar]
- Stöckli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Bartlett, M.K.; Scoffoni, C.; Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 2012, 15, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Volaire, F. A unified framework of plant adaptive strategies to drought: Crossing scales and disciplines. Glob. Chang. Biol. 2018, 24, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Ogle, K.; Reynolds, J.F. Plant responses to precipitation in desert ecosystems: Integrating functional types, pulses, thresholds, and delays. Oecologia 2004, 141, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef]
- Weiss, J.L.; Gutzler, D.S.; Coonrod, J.E.A.; Dahm, C.N. Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J. Arid Environ. 2004, 58, 249–272. [Google Scholar] [CrossRef]
- Pierret, A.; Maeght, J.-L.; Clément, C.; Montoroi, J.-P.; Hartmann, C.; Gonkhamdee, S. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Ann. Bot. 2016, 118, 621–635. [Google Scholar] [CrossRef]
- Abdelhakim, L.O.A.; Zhou, R.; Ottosen, C.-O. Physiological Responses of Plants to Combined Drought and Heat under Elevated CO2. Agronomy 2022, 12, 2526. [Google Scholar] [CrossRef]
- Sreeman, S.M.; Vijayaraghavareddy, P.; Sreevathsa, R.; Rajendrareddy, S.; Arakesh, S.; Bharti, P.; Dharmappa, P.; Soolanayakanahally, R. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants. Front. Chem. 2018, 6, 92. [Google Scholar]
- D’Odorico, P.; Scanlon, T.M.; Runyan, C.W.; Abshire, K.; Barrett, P.; Bhattachan, A.; Coloso, J.J.; Erler, A.; Miller, J.; Mitchell, N.; et al. Dryland ecohydrology: Research perspectives. Ann. Arid. Zone 2009, 48, 1–29. [Google Scholar]
- Seghieri, J.; Floret, C.H.; Pontanier, R. Plant phenology in relation to water availability: Herbaceous and woody species in the savannas of northern Cameroon. J. Trop. Ecol. 1995, 11, 237–254. [Google Scholar] [CrossRef]
- Laosuwan, T.; Sangpradid, S.; Gomasathit, T.; Rotjanakusol, T. Application of remote sensing technology for drought monitoring in Mahasarakham Province, Thailand. Int. J. Geoinform. 2016, 12, 17–25. [Google Scholar]
- Zohner, C.M.; Benito, B.M.; Svenning, J.-C.; Renner, S.S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Chang. 2016, 6, 1120–1123. [Google Scholar] [CrossRef]
- Keenan, T.F.; Richardson, A.D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob. Chang. Biol. 2015, 21, 2634–2641. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.H.; Zhao, H.; Piao, S.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.; Menzel, A.; Peñuelas, J.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef]
- Asse, D.; Chuine, I.; Vitasse, Y.; Yoccoz, N.G.; Delpierre, N.; Badeau, V.; Delestrade, A.; Randin, C.F. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric. For. Meteorol. 2018, 252, 220–230. [Google Scholar] [CrossRef]
- Shavrukov, Y.; Kurishbayev, A.; Jatayev, S.; Shvidchenko, V.; Zotova, L.; Koekemoer, F.; de Groot, S.; Soole, K.; Langridge, P. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Front. Plant Sci. 2017, 8, 1950. [Google Scholar] [CrossRef]
- Lepais, O.; Muller, S.D.; Ben Saad-Limam, S.; Benslama, M.; Rhazi, L.; Belouahem-Abed, D.; Daoud-Bouattour, A.; Gammar, A.M.; Ghrabi-Gammar, Z.; Bacles, C.F.E. High Genetic Diversity and Distinctiveness of Rear-Edge Climate Relicts Maintained by Ancient Tetraploidisation for Alnus glutinosa. PLoS ONE 2013, 8, e75029. [Google Scholar] [CrossRef]
- Craven, D.; Isbell, F.; Manning, P.; Connolly, J.; Bruelheide, H.; Ebeling, A.; Roscher, C.; van Ruijven, J.; Weigelt, A.; Wilsey, B.; et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B: Biol. Sci. 2016, 371, 20150277. [Google Scholar] [CrossRef]
- Andresen, L.C.; Michelsen, A.; Ambus, P.; Beier, C. Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought. Biogeochemistry 2010, 101, 27–42. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef]
- Heisler-White, J.L.; Knapp, A.K.; Kelly, E.F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 2008, 158, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M.D. Adaptations and responses to drought in Quercus species of North America. Tree Physiol. 1990, 7, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Morales, C.L.; Traveset, A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol. Lett. 2009, 12, 716–728. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Sparrow, B.D.; Edwards, W.; Munroe, S.E.; Wardle, G.M.; Guerin, G.R.; Bastin, J.; Morris, B.; Christensen, R.; Phinn, S.; Lowe, A.J. Effective ecosystem monitoring requires a multi-scaled approach. Biol. Rev. 2020, 95, 1706–1719. [Google Scholar] [CrossRef]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Agossou, C.; Kang, S. Climatic factors controlling interannual variability of the onset of vegetation phenology in the northern Sub-Saharan Africa from 1988 to 2013. Afr. J. Ecol. 2020, 58, 299–308. [Google Scholar]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Ibáñez, I.; Primack, R.B.; Miller-Rushing, A.J.; Ellwood, E.; Higuchi, H.; Lee, S.D.; Kobori, H.; Silander, J.A. Forecasting phenology under global warming. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3247–3260. [Google Scholar] [CrossRef] [PubMed]
- Chmura, H.E.; Kharouba, H.M.; Ashander, J.; Ehlman, S.M.; Rivest, E.B.; Yang, L.H. The mechanisms of phenology: The patterns and processes of phenological shifts. Ecol. Monogr. 2019, 89, e01337. [Google Scholar] [CrossRef]
- Smith, A.B.; Brown, J.F.; Funk, C.; Funk, R.; Loveland, T.R. Impact of vegetation green-up and senescence on the detection of drought using MODIS data. Remote Sens. Environ. 2017, 198, 437–446. [Google Scholar]
- Johnson, C.D.; Brown, M.E. Monitoring agricultural drought in the continental United States using MODIS NDVI. Remote Sens. 2018, 10, 416. [Google Scholar]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
Data Source | Platform | Resolution | Band | Period | Advantages | Limitations |
---|---|---|---|---|---|---|
Moderate Resolution Imaging Spectroradiometer (MODIS) | Terra and Aqua | 250 m (visible light and NIR), 500 m (NIR), 1 km (TIR) | 36 bands (0.4–14.4 µm) | 1999–Present | Frequent temporal coverage, wide spectral range, global coverage | Moderate spatial resolution, data quality affected by cloud cover |
Landsat Series | Landsat 8, ETM+ on Landsat 7, TM on Landsat 5 | 30 m (visible light, NIR, NIR, SWIR), 15 m (panchromatic), 60 m (TIR, Landsat 5), 100 m (TIR, Landsat 8) | 11 bands (0.43–12.51 µm) | 1972–Present | High spatial resolution, long-term data record | 16-day revisit period, data gaps (Landsat 7 SLC issue) |
Sentinel-2 | Sentinel-2A and 2B | 10 m (visible light and NIR), 20 m (Red Edge, SWIR), 60 m (Coastal Aerosol, Water Vapor, SWIR Cirrus) | 13 bands (0.443–2.19 µm) | 2015–Present | High spatial resolution, frequent revisit time, free data access | Data quality affected by cloud cover, complex data processing |
AVHRR (Advanced Very High-Resolution Radiometer) | NOAA and MetOp | 1.1 km | 6 bands (0.58–12.5 µm) | 1978–Present | Long-term data availability, wide swath width | Coarse spatial resolution, data quality variability |
VIIRS (Visible Infrared Imaging Radiometer Suite) | Suomi NPP and NOAA-20 | 375 m (I-bands), 750 m (M-bands) | 22 bands (0.412–12.01 µm) | 2011–Present | Moderate spatial resolution, comprehensive spectral bands, near-daily global coverage | Large data volumes, relatively new and shorter time series |
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) | Terra | 15 m (visible light and NIR), 30 m (SWIR), 90 m (TIR) | 14 bands (0.52–11.65 µm) | 1999– Present | High spatial resolution, multiple spectral bands, global coverage | SWIR sensor inoperable, 16-day revisit period, data processing requirements |
No. | Variable | Name | Formula | Reference | Examples | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
1 | Moisture | Moisture Stress Index (MSI) | is the reflectance. | [32] | [33,34] | Effectively reflects vegetation moisture conditions; sensitive to changes in soil and vegetation moisture. | Highly dependent on soil type and vegetation species, which may lead to inaccuracies; requires ground truth data for calibration. |
2 | Reciprocal of the Moisture Stress Index (RMSI) | [35] | [36,37] | Enhances sensitivity to low moisture conditions through its reciprocal form; can be combined with other indices to provide more comprehensive information. | May perform poorly under high moisture conditions, leading to misinterpretation; data processing is complex and requires careful interpretation. | ||
3 | Simple Ratio Water Index (SRWI) | [38] | [39,40] | Simple to calculate and easy to understand and apply; shows good responsiveness to vegetation moisture changes. | Sensitive to variations in light conditions and soil background, which may affect results; provides relative information, lacking absolute assessments of moisture content. | ||
4 | Normalized difference water index (NDWI) | [41] | [42,43] | Effectively distinguishes water bodies from vegetation, suitable for monitoring moisture changes; can utilize existing remote sensing data for calculations. | May be affected in areas with high vegetation cover, leading to errors in results; highly influenced by weather conditions, which may cause fluctuations in data quality. | ||
5 | Normalized Difference Infrared Index (NDII) | [44] | [42,45] | Sensitive to vegetation moisture conditions; effectively distinguishes different types of vegetation. | Sensitive to atmospheric conditions and surface characteristics; needs to be used in conjunction with other indices to improve accuracy. | ||
6 | Temperature | Temperature Condition Index (TCI) | [46] | [47,48] | Effectively reflects the temperature conditions of vegetation; can be easily calculated using remote sensing data, making it suitable for large-scale monitoring; can provide a more comprehensive drought assessment when combined with other vegetation indices. | May be affected by climate change and seasonal temperature fluctuations, leading to unstable results; does not directly measure soil or vegetation moisture; needs long-term temperature data for baseline comparisons. | |
7 | Vegetation conditions | Anomaly Vegetation Index (AVI) | [43] | [49,50,51] | Reflects the relative condition of vegetation compared to historical data; can be easily calculated from satellite imagery. | Sensitive to seasonal variations, which may complicate interpretation; requires a long-term dataset for accurate historical comparisons. | |
8 | Vegetation Condition Index (VCI) | [46] | [52,53] | Reflects the relative condition of vegetation compared to historical data; can be easily calculated from satellite imagery. | Sensitive to seasonal variations, which may complicate interpretation; requires a long-term dataset for accurate historical comparisons. | ||
9 | Vegetation Health Index (VHI) | [46] | [54,55] | Combines information from both the VCI and the TCI, providing a comprehensive view of vegetation health. | Complexity in calculation due to the integration of multiple indices; may require ground truth data for calibration to improve accuracy. | ||
10 | Solar Induced Fluorescence (SIF) | May be measured using narrow absorption lines such as the Fraunhofer lines or the O2 absorption lines. | [56] | [57,58] | Directly measures photosynthetic activity, providing insights into vegetation stress and health; sensitive to changes in water availability and can indicate drought conditions effectively. | Requires advanced sensors and technology, which may not be widely available; interpretation can be complex, as fluorescence signals can be influenced by various environmental factors. | |
11 | Feature space | Perpendicular Drought Index (PDI) | where M represents the slope of the soil line in the NIR/Red feature space. | [59] | [60,61] | Simple to compute and interpret, making it accessible for various applications; effectively distinguishes between drought and non-drought conditions based on vegetation health. | May not account for all environmental factors influencing vegetation health, potentially leading to inaccuracies; limited sensitivity to subtle changes in moisture levels. |
12 | Modified Perpendicular Drought Index (MPDI) | are pure vegetation reflectances. | [59] | [62,63] | Enhances the original PDI by incorporating additional spectral information, improving sensitivity to drought conditions; provides a more nuanced assessment of vegetation health and moisture stress. | Increased complexity in calculation compared to PDI, which may require more data and processing; still dependent on accurate input data, which can vary with sensor quality and environmental conditions. | |
13 | Temperature Vegetation Dryness Index (TVDI) | where LST is land surface temperature, and a and b are parameters defining the dry edge in the LST/NDVI feature space. | [64] | [65,66] | Combines temperature and vegetation indices to provide a clear indication of moisture stress; effective in distinguishing between wet and dry conditions. | Sensitive to atmospheric conditions, which can affect temperature readings; requires accurate temperature and vegetation data. | |
14 | Vegetation Temperature Condition Index (VTCI) | where are edge line coefficients in LST and fractional vegetation coverage (LST/FVC) feature space. | [67] | [68,69] | Integrates temperature and vegetation data to assess plant stress and drought conditions effectively; can provide timely information for decision-making in drought management. | Complexity in calculations may require advanced data processing techniques; interpretation can be affected by local climatic conditions, which may lead to variability in results. | |
15 | Evapotranspiration | Water Deficit Index (WDI) or Crop Water Stress Index (CWSI) for full-cover canopies | where ET: evapotranspiration, PET: potential evapotranspiration. | [70] | [71,72] | Specifically designed to assess water stress in crops, providing relevant information for agricultural management; effective for full-cover canopies, allowing for accurate monitoring of plant water status. | Limited applicability to non-crop vegetation types, which may reduce its overall utility; requires precise temperature and humidity data, which may not always be readily available. |
16 | Evaporative Stress Index (ESI) | [73] | [74,75] | Reflects the evaporative demand on vegetation, making it sensitive to changes in moisture availability; useful for monitoring drought conditions across various vegetation types and ecosystems. | May be influenced by local climatic conditions, which can affect the accuracy of the index; requires comprehensive meteorological data, which may not be accessible in all regions. | ||
17 | Combination | Drought Severity Index (DSI) | where | [76] | [77,78] | Provides a quantitative measure of drought severity, allowing for clear assessment and comparison; can integrate various meteorological and hydrological data, making it comprehensive. | May require extensive historical data for calibration, which can be a limitation in data-scarce regions; interpretation can be complex, as it involves multiple factors. |
18 | Reconnaissance Drought Index (RDI) | Normalized RDI: Standardized RDI: where Pj is precipitation, | [79] | [80,81] | Combines rainfall and potential evapotranspiration data, providing a holistic view of drought conditions; useful for assessing both short-term and long-term drought impacts on vegetation. | Sensitive to data quality, as inaccuracies in rainfall or evapotranspiration data can affect results; may not capture localized variations in drought conditions effectively. |
Categories | Descriptions | Strengths | Limitations | Examples |
---|---|---|---|---|
VIs-based Approach | This approach utilizes vegetation indices, such as NDVI, EVI, and LAI, derived from satellite data to track seasonal changes in vegetation greenness and canopy structure. | Widely used, easy to implement, and can capture broad-scale phenological patterns. | Susceptible to atmospheric effects, may not capture fine scale phenological events, and can be influenced by vegetation heterogeneity. | [122,123,124] |
Thermal-based Approach | This category of methods leverages LST data from thermal infrared sensors to monitor plant phenology, often in combination with vegetation indices. | Provides information on the thermal environment driving plant development, can capture earlier phenological events. | Requires accurate atmospheric correction, may not work well in regions with complex topography or land cover. | [125,126,127] |
Modeling Approach | These methods integrate remote sensing data with process-based or empirical models to simulate and predict plant phenology. | Can incorporate additional environmental drivers, can be used for forecasting and scenario analysis. | Requires detailed parameterization, may be computationally intensive, and can be limited by model assumptions. | [128,129,130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhong, S. Advances in Optical and Thermal Remote Sensing of Vegetative Drought and Phenology. Remote Sens. 2024, 16, 4209. https://doi.org/10.3390/rs16224209
Li T, Zhong S. Advances in Optical and Thermal Remote Sensing of Vegetative Drought and Phenology. Remote Sensing. 2024; 16(22):4209. https://doi.org/10.3390/rs16224209
Chicago/Turabian StyleLi, Ting, and Shaobo Zhong. 2024. "Advances in Optical and Thermal Remote Sensing of Vegetative Drought and Phenology" Remote Sensing 16, no. 22: 4209. https://doi.org/10.3390/rs16224209
APA StyleLi, T., & Zhong, S. (2024). Advances in Optical and Thermal Remote Sensing of Vegetative Drought and Phenology. Remote Sensing, 16(22), 4209. https://doi.org/10.3390/rs16224209