Discussion Points of the Remote Sensing Study and Integrated Analysis of the Archaeological Landscape of Rujm el-Hiri
Abstract
:1. Introduction
2. Data and Methodology
3. Geophysical Studies in the Region
4. Results of the Remote Sensing Study
4.1. The Structure of Rujm el-Hiri
4.2. Rujm el-Hiri’s Vicinity—Tracing the Critical Repeating Landscape Patterns
4.2.1. Linear Walls
4.2.2. Flower-Like Fences
4.2.3. Large, Round-Shaped Singular Structures
4.2.4. Tumuli, Dolmens, Cairns or Roundhouses
4.3. Mixed Types of Landscape Patterns; Older vs. Later Period Layers
5. Discussion
6. Conclusions
- The landscape surrounding Rujm el-Hiri exhibits several recurring patterns: large-scale singular circles comparable in size to Rujm el-Hiri, thick walls analogous to those of Rujm el-Hiri, linear thin walls dividing the land into rectangular sections, flower-like clusters of small round-shaped fences, and tumuli.
- -
- Large ~40–90-m-wide circles are extremely rare and appear as old as Rujm el-Hiri. These typically consist of two concentric circles with spiral-like structures attached to the inner circle.
- -
- The three-meter-wide walls are primarily built along streams or near lakes. Based on their visual characteristics, they were likely constructed during the same period as Rujm el-Hiri.
- -
- The thin linear walls, constructed later, often overlay older landscape features. They form rectangular fields that were perhaps used as pastures.
- -
- The flower-like clusters of small ~20 m-wide circular walls or fences are less common than quasi-rectangular pastures. The fact that they are predominantly found in wet areas, typically near existing or dried-up streams, may suggest that these structures were used for agricultural purposes.
- -
- Based on satellite imagery analysis and structural examination, the tumuli appear to have been constructed during the same period as the linear walls and flower-like clusters. Our study suggests that while the tumuli exhibit similar designs, they may have served different purposes while sharing a common, circular form.
- Most archaeological structures in the region were reused long after their original construction. In some instances, this involved adding new layers or building walls over older ones, while in others, it damaged the original structures. Rujm el-Hiri is a prime example of such repurposing. The simplified architectural designs of later-period walls and attached structures may indicate that the original construction technologies were lost over time.
- The geological structure of the Rujm el-Hiri’s area has been shaped by the tectonic evolution of the region, leading to the rotation of blocks and, therefore, the migration of its location and the direction of the main entrance and the radial walls over time. The region’s integrated geophysical analysis (mainly GPS and paleomagnetic reconstructions) reveals that the Rujm el-Hiri site has rotated counterclockwise and shifted from its original location by tens of meters. This means that the current orientation of the radial walls and entrances was not the same as ~4000–2000 BCE, and the speculations that they were aligned with celestial bodies of the past are not supported. Therefore, Rujm el-Hiri was unlikely an observatory.
- Studies of the unmasked archaeological features should be continued using advanced remote sensing procedures and surface geophysical methods (e.g., Ground-Penetrating Radar, high-precise magnetics, and Electric Resistivity Tomography (ERT)) with further archaeological excavations.
- Our study reveals the objects besides Ryjm el-Hiri that have not been categorized before and illustrates how remote sensing can identify and contextualize archaeological landscapes by detecting previously unknown sites and revealing patterns that suggest complex relationships between structures and the natural environment. It aligns with ongoing efforts to use technology to uncover how ancient societies adapted to and transformed their surroundings, adding a crucial piece to how megalithic cultures developed in the Levant and beyond.
- This study’s implications extend beyond the Levant, inviting comparative studies with other megalithic structures and tumuli worldwide. The possible parallels between Rujm el-Hiri and other monumental Mediterranean structures of the same period suggest that a broader cultural or technological tradition may have influenced the design and construction of such sites across the region. The similarities in structure, such as concentric circles and radial walls, highlight the need for further interdisciplinary research that combines archaeological, geophysical, and paleoenvironmental data to understand these monuments’ origins and purposes better.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, K. Taş çağı avcılarının gizemli kutsal alanı. In Göbekli Tepe, en Eski Tapınağı Yapanlar; Arkeoloji ve Sanat Yayınları: İstanbul, Turkey, 2007; 318p, ISBN 9789944750219. [Google Scholar]
- Hoskin, M.A.; Allan, E.; Gralewski, R. The Tombe Di Giganti and Temples of Nuraghic Sardinia. J. Hist. Astron. 1993, 24, S1–S26. [Google Scholar] [CrossRef]
- Cummings, V.; Whittle, A. Places of Special Virtue: Megaliths in the Neolithic Landscapes of Wales; Oxbow Books: Oxford, UK, 2004. [Google Scholar] [CrossRef]
- Burl, A. The sun, the moon, and megaliths: Archaeo-astronomy and the standing stones of northern Ireland. Ulst. J. Archaeol. 1987, 50, 7–21. [Google Scholar]
- Malville, J.M.; Wendorf, F.; Mazar, A.A.; Schild, R. Megaliths and Neolithic astronomy in southern Egypt. Nature 1998, 392, 488–491. [Google Scholar] [CrossRef]
- Pearson, M.P. Researching Stonehenge: Theories Past and Present. Archaeol. Int. 2013, 16, 72–83. [Google Scholar] [CrossRef]
- Horowitz, A. The Quaternary of Israel; Academic Press: New York, NY, USA, 1979; 394p. [Google Scholar]
- Develle, A.-L.; Herreros, J.; Vidal, L.; Sursock, A.; Gasse, F. Controlling factors on a paleo-lake oxygen isotope record (Yammoûneh, Lebanon) since the Last Glacial Maximum. Quatern. Sci. Rev. 2010, 29, 865–886. [Google Scholar] [CrossRef]
- Cheng, H.; Sinha, A.; Verheyden, S.; Nader, F.H.; Li, X.L.; Zhang, P.Z.; Yin, J.J.; Yi, L.; Peng, Y.B.; Rao, Z.G.; et al. The climate variability in northern Levant over the past 20,000 years. Geophys. Res. Lett. 2015, 42, 8641–8650. [Google Scholar] [CrossRef]
- Baruch, U. The Late Holocene Vegetational History of Lake Kinneret (Sea of Galilee), Israel. Paléorient 1986, 12, 37–48. [Google Scholar] [CrossRef]
- Litt, T.; Ohlwein, C.; Neumann, F.H.; Hense, A.; Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 2012, 49, 95–105. [Google Scholar] [CrossRef]
- Kadosh, D.; Sivan, D.; Kutiel, H.; Weinstein-Evron, M. A Late Quaternary Paleoenvironmental Sequence from Dor, Carmel Coastal Plain, Israel. Palynology 2004, 28, 143–157. [Google Scholar] [CrossRef]
- Guiot, J.; Kaniewski, D. The Mediterranean Basin and Southern Europe in a warmer world: What can we learn from the past? Front. Earth Sci. 2015, 3, 28. [Google Scholar] [CrossRef]
- Schiebel, V.; Litt, T. Holocene vegetation history of the southern Levant based on a pollen record from Lake Kinneret (Sea of Galilee), Israel. Veget. Hist. Archaeobotany 2018, 27, 577–590. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 2011, 21, 163–171. [Google Scholar] [CrossRef]
- Manning, S.W.; Lorentzen, B.; Welton, L.; Batiuk, S.; Harrison, T.P. Beyond megadrought and collapse in the Northern Levant: The chronology of Tell Tayinat and two historical inflection episodes, around 4.2 ka BP, and following 3.2 ka BP. PLoS ONE 2020, 15, e0240799. [Google Scholar] [CrossRef] [PubMed]
- Langgut, D.; Finkelstein, I.; Litt, T. Climate and the Late Bronze Collapse: New Evidence from the Southern Levant. J. Inst. Archaeol. Tel Aviv Univ. 2013, 40, 149–175. [Google Scholar] [CrossRef]
- Clarke, J.; Brooks, N.; Banning, E.B.; Bar-Matthews, M.; Campbell, S.; Clare, L.; Cremaschi, M.; di Lernia, S.; Drake, N.; Gallinaro, M.; et al. Climatic changes and social transformations in the Near East and North Africa during the ‘long’ 4th millennium BC: A comparative study of environmental and archaeological evidence. Quat. Sci. Rev. 2015, 136, 96–121. [Google Scholar] [CrossRef]
- Finné, M.; Holmgren, K.; Shen, C.C.; Hu, H.M.; Boyd, M.; Stocker, S. Late Bronze Age climate change and the destruction of the Mycenaean Palace of Nestor at Pylos. PLoS ONE 2017, 12, e0189447. [Google Scholar] [CrossRef]
- Kaniewski, D.; Van Campo, E. 3.2 ka BP Megadrought and the Late Bronze Age Collapse. In Megadrought and Collapse: From Early Agriculture to Angkor; Harvey, W., Ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Freikman, M.; Porat, N. Rujm el-Hiri: The Monument in the Landscape. J. Inst. Archaeol. Tel Aviv Univ. 2017, 44, 14–39. [Google Scholar] [CrossRef]
- Drucks, A. A story of a discovery: Megalithic culture from the Carmamte period in die Golan. Salit 1972, 1, 124–127. Available online: https://www.nli.org.il/he/articles/RAMBI990003376420705171/NLI (accessed on 7 November 2024). (In Hebrew).
- Epstein, C.; Gutman, S. Ha-Golan. In Judaea, Samaria and the Golan—Archaeological Survey, 1967–1968; Kochavi, M., Ed.; Israel Exploration Society: Jerusalem, Israel, 1972. (In Hebrew) [Google Scholar]
- Zohar, M. Rogem Hiri: A Megalithic Monument in die Golan. Isr. Explor. J. 1989, 39, 18–31. [Google Scholar]
- Mizrachi, Y.; Zohar, M.; Kochavi, M.; Murphy, V.; Lev-Yadun, S. 1988–1991 Excavations at Rogem Hiri. Isr. Explor. J. 1996, 46, 169–175. Available online: https://www.jstor.org/stable/27926433 (accessed on 7 November 2024).
- Aveni, A.; Mizrachi, Y. The Geometry and Astronomy of Rujm el-Hiri, a Megalithic Site in the Southern Levant. J. Field Archaeol. 1998, 25, 475–496. [Google Scholar] [CrossRef]
- Freikman, M. A Near Eastern Megalithic Monument in Context. J. Anc. Stud. 2012, 3, 1007–1010. [Google Scholar]
- Freikman, M. Megalithic Architecture in the Southern Levant: Case Study of the Golan. Ph.D. Thesis, Hebrew University of Jerusalem, Jerusalem, Israel, 2014. [Google Scholar]
- Available online: https://library.biblicalarchaeology.org/article/mystery-circles/ (accessed on 7 November 2024).
- Available online: https://sketchfab.com/3d-models/rujum-el-hiri-e2bcaed2689c4b2098cd525919400282 (accessed on 7 November 2024).
- Mizrachi, Y. Rujm El-Hiri. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1992. [Google Scholar]
- Freikman, M. Dating the Megalithic Structures of the Golan. J. Isr. Prehist. Soc. 2018, 48, 108–146. [Google Scholar]
- Hartal, M. Northern Golan Heights: The Archaeological Survey as a Source of Regional History; Israel Department of Antiquities and Museums, Ministry of Education and Culture: Katsrin, Israel, 1989. [Google Scholar]
- Kochavi, M. Queries and Comments: Land of Geshur—An Alternative Interpretation of the Great Stone Circles. Biblic. Archaeol. Rev. 1993, 19, 72–74. [Google Scholar]
- Buckingham, J.S. Travels in Palestine Through the Countries of Bashan and Gilead, East of the River Jordan: Including a Visit to the Cities of Geraza and Gamala in the Decapolis; Longman, Hurst, Rees, Orme, and Brown: London, UK, 1821. [Google Scholar]
- Robinson, E.; Smith, E. Biblical Researches in Palestine, and in the Adjacent Regions: A Journal of Travels in the Year 1838 & 1852; John Murray: London, UK, 1856; Volume 2. [Google Scholar]
- Oliphant, L. Explorations North-East of Lake Tiberias and Jaulan. Palest. Explor. Fund Q. 1885, 17, 82–93. [Google Scholar] [CrossRef]
- Oliphant, L. New Discoveries. Palest. Explor. Fund Q. 1886, 18, 73–81. Available online: https://archive.org/details/quarterlystateme17pale/page/72 (accessed on 7 November 2024). [CrossRef]
- Schumacher, G. The Jaulân: Surveyed for the German Society for the Exploration of the Holy Land; Bentley, R., Ed.; Cambridge University Press: Cambridge, UK, 1888; 304p, Available online: https://archive.org/details/jaulansurveyedf00schu (accessed on 7 November 2024).
- Goren-Inbar, N. Prehistoric sites in the north of the Golan Heights. Ariel. J. Knowl. Eretz-Isr. 1987, 50–52, 45–48. [Google Scholar]
- Dauphin, C.; Gibson, S. Ancient Settlements in their Landscapes: The Results of Ten Years of Survey on the Golan Heights (1978–1988). Bull. Anglo-Isr. Archaeol. Soc. 1993, 12, 7–31. [Google Scholar]
- Hartal, M. Archaeological Survey as a Source for the History of the Golan. Qadmoniot 2014, 80, 89–148. [Google Scholar]
- Available online: https://survey.antiquities.org.il/#/Golan (accessed on 7 November 2024).
- Hritz, C. Contributions of GIS and satellite-based remote sensing to landscape archaeology in the Middle East. J. Archaeol. Res. 2014, 22, 229–276. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, M.; Wang, W.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Campana, S.R.L. Remote Sensing in Archaeology. In Encyclopedia of Earth Sciences Series; Finkl, S.W., Ed.; Springer: Cham, Switzerland, 2023; pp. 1–25. [Google Scholar] [CrossRef]
- Marciak, M.; Sobczynski, D.; Abadi, O.; Szypuła, B.; Schwimmer, L.; Cilová, M. In Search of Ancient Pre-Roman Imperial Roads: A Case Study of the Application of Remote Sensing in Road Archaeology in the Southern Levant. Remote Sens. 2023, 15, 4545. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Archaeological geophysics in Israel: Past, Present, and Future. Adv. Geosci. 2010, 24, 45–68. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Kochavi, M.; Vinizki, L.; Shionim, M.; Portugali, J. Detection of buried ancient walls using airborne thermal video radiometry. Int. J. Remote Sens. 2001, 22, 3689–3702. [Google Scholar] [CrossRef]
- Available online: https://landsat.gsfc.nasa.gov/data/data-access (accessed on 7 November 2024).
- Available online: https://earthexplorer.usgs.gov/ (accessed on 7 November 2024).
- Available online: https://cnes.fr/projets/pleiades (accessed on 7 November 2024).
- Available online: https://intelligence.airbus.com/ (accessed on 7 November 2024).
- Available online: https://www.maxar.com/maxar-intelligence/about (accessed on 7 November 2024).
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F.; et al. Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Herndon, K.E.; Griffin, R.; Schroder, W.; Murtha, T.; Golden, C.; Contreras, D.A.; Cherrington, E.; Wang, L.; Bazarsky, A.; Van Kollias, G.; et al. Google Earth Engine for archaeologists: An updated look at the progress and promise of remotely sensed big data. J. Archaeol. Sci. Rep. 2023, 50, 104094. [Google Scholar] [CrossRef]
- Küçükdemirci, M.; Sarris, A. Deep learning based automated analysis of archaeo-geophysical images. Archaeol. Prospect. 2020, 27, 107–118. [Google Scholar] [CrossRef]
- Kaimaris, D. Ancient theaters in Greece and the contribution of geoinformatics to their macroscopic constructional features. Sci. Cult. 2018, 4, 9–25. [Google Scholar] [CrossRef]
- Kaimaris, D. Utilization of different sensors in UAV for the detection and optimal visual observation of the marks over buried ancient remains. Sci. Cult. 2022, 8, 129–145. [Google Scholar] [CrossRef]
- Karmowski, J. Visual Viewshed Simulation: Applying a 3D environment in archaeological research at Faysaliyya (southern Jordan). Pol. Archaeol. Mediterr. 2022, 31, 519–535. [Google Scholar] [CrossRef]
- Ben-Romdhane, H.; Francis, D.; Cherif, C.; Pavlopoulos, K.; Ghedira, H.; Griffiths, S. Detecting and Predicting Archaeological Sites Using Remote Sensing and Machine Learning—Application to the Saruq Al-Hadid Site, Dubai, UAE. Geosciences 2023, 13, 179. [Google Scholar] [CrossRef]
- Fuentes-Carbajal, J.A.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F.; Flores-López, J.A. Machine Learning and Image-Processing-Based Method for the Detection of Archaeological Structures in Areas with Large Amounts of Vegetation Using Satellite Images. Appl. Sci. 2023, 13, 6663. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Khabarova, O.; Birkenfeld, M. Advancing Archaeo-Geophysics Through Integrated Informational-Probabilistic Techniques and Remote Sensing. J. Appl. Geophys. 2024, 227, 105437. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Development of an image-based method for detecting archaeological buried relics using multi-temporal satellite imagery. Int. J. Remote Sens. 2013, 34, 5979–5996. [Google Scholar] [CrossRef]
- Payntar, N.D. A Multi-Temporal Analysis of Archaeological Site Destruction using Landsat Satellite Data and Machine Learning, Moche Valley, Peru. ACM J. Comput. Cult. Herit. 2023, 16, 47. [Google Scholar] [CrossRef]
- Buławka, N.; Orengo, H.A. Application of Multi-Temporal and Multisource Satellite Imagery in the Study of Irrigated Landscapes in Arid Climates. Remote Sens. 2024, 16, 1997. [Google Scholar] [CrossRef]
- Smith, R. Disasters and Archaeology: A Remote Sensing Approach for Determination of Archaeology At-Risk to Desertification in Sistan. Remote Sens. 2024, 16, 2382. [Google Scholar] [CrossRef]
- Šošić Klindžić, R.; Šiljeg, B.; Kalafatić, H. Multiscale and Multitemporal Remote Sensing for Neolithic Settlement Detection and Protection—The Case of Gorjani, Croatia. Remote Sens. 2024, 16, 736. [Google Scholar] [CrossRef]
- Kaimaris, D.; Tsokas, D. Application of UAS with Remote Sensing Sensors for the Location of Marks in the Archaeological Site of the Europos. Greece Remote Sens. 2023, 15, 3843. [Google Scholar] [CrossRef]
- Agapiou, A.; Hegyi, A.; Gogâltan, F.; Stavilă, A.; Sava, V.; Sarris, A.; Floca, C.; Dorogostaisky, L. Exploring the largest known Bronze Age earthworks in Europe through medium resolution multispectral satellite images. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103239. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Katz, Y.I. Paleomagnetic-geodynamic mapping of the transition zone from ocean to the continent: A review. Appl. Sci. 2022, 12, 5419. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Katz, Y.I.; Ben-Avraham, Z. Geodynamic aspects of magnetic data analysis and tectonic-paleomagnetic mapping in the Easternmost Mediterranean: A review. Appl. Sci. 2023, 13, 10541. [Google Scholar] [CrossRef]
- Enzel, Y.; Amit, R.; Dayan, U.; Crouvi, O.; Kahana, R.; Ziv, B.; Sharon, D. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Glob. Planet. Chang. 2008, 60, 165–192. [Google Scholar] [CrossRef]
- Brinkman, R.; Sombroek, W.G. The effects of global change on soil conditions in relation to plant growth and food production. In Global Climate Change and Agricultural Production: Direct and Indirect Effects of Changing Hydrological, Pedological and Plant Physiological Processes; Bazzaz, F., Sombroek, W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Shourie, A.; Singh, A. Impact of Climate Change on Soil Fertility. In Climate Change and the Microbiome; Choudhary, D.K., Mishra, A., Varma, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 63, pp. 551–569. [Google Scholar] [CrossRef]
- Dan, J. The soils of the land of Israel. In The Zoogeography of Israel; Yom-Tov, Y., Tchernov, E., Eds.; W. Junk Publishers: Dordrecht, The Netherlands, 1988; pp. 95–128. [Google Scholar]
- Boyce, J.I.; Reinhardt, E.G.; Raban, A.; Pozza, M.R. The utility of marine magnetic surveying for mapping buried hydraulic concrete harbour structures: Marine Magnetic Survey of a Submerged Roman Harbour, Caesarea Maritima, Israel. Int. J. Naut. Archaeol. 2004, 33, 122–136. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Study of magnetic anomalies over archaeological targets in urban conditions. Phys. Chem. Earth 2011, 36, 1318–1330. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate, and intermediate models under complex physical-geological environments in archaeological prospection. Archaeol. Prospect. 2015, 23, 255–268. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. System of Potential Geophysical Field Application in Archaeological Prospection. In Handbook on Cultural Heritage Analysis; D’Amico, S., Venuti, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 771–809. [Google Scholar] [CrossRef]
- Sternberg, R.; Lass, E.; Marion, E.; Katari, K.; Holbrook, M. Anomalous archaeomagnetic directions and site formation processes at archaeological sites in Israel. Geoarchaeology 1999, 14, 415–439. [Google Scholar] [CrossRef]
- Segal, Y.; Marco, S.; Ellenblum, R. Intensity and direction of the geomagnetic field in 24 August, 1179 measured in Vadum Iacob (Ateret) Crusader Fortress, northern Israel. Israel J. Earth Sci. 2003, 52, 203–208. [Google Scholar] [CrossRef]
- Ben-Yosef, E.; Tauxe, L.; Ronb, H.; Agnon, A.; Avner, U.; Najjar, M.; Levy, T.E. A new approach for geomagnetic archaeointensity research: Insights on ancient metallurgy in the Southern Levant. J. Archaeol. Sci. 2008, 25, 2863–2879. [Google Scholar] [CrossRef]
- Eppelbaum, L.V.; Katz, Y.I. African-Levantine Areal of Ancient Hominin Dispersal: A New Look Derived from Comprehensive Geological-Geophysical Integration. In Emerging Issues in Environment, Geography and Earth Science; Yousef, A.F., Ed.; BP International: London, UK, 2024; Volume 7, pp. 151–222. [Google Scholar] [CrossRef]
- Witten, A.J.; Levy, T.E.; Ursic, J.; White, P. Geophysical diffraction tomography: New views on the Shiqmim prehistoric subterranean village site (Israel). Geoarchaeology 1995, 10, 97–118. [Google Scholar] [CrossRef]
- Weinstein-Evron, M.; Beck, A.; Ezersky, M. Geophysical investigations in the service of Mount Carmel (Israel) prehistoric research. J. Archaeol. Sci. 2003, 30, 1331–1341. [Google Scholar] [CrossRef]
- Paparo, H. Temperature study of the archaeological site Crusades Fortress Um Haled (Netanya). In Proceedings of the Israel Geological Society, Annual Meeting, Akko, Israel, 22 April 1991; p. 77. [Google Scholar]
- Berkovitch, A.L.; Eppelbaum, L.V.; Basson, U. Application of multifocusing seismic processing to the GPR data analysis. In Proceedings of the 13th EEGS Symposium on the Application of Geophysics to Engineering and Environmental, Arlington, VA, USA, 20–24 February 2000; pp. 597–606. [Google Scholar] [CrossRef]
- Jol, H.M.; Broshi, M.; Eshel, H. GPR investigations at Qumran, Israel: Site of the Dead Sea Scrolls discovery. In Proceedings of the SPIE Conference, Santa-Barbara, CA, USA, 3–8 August 2003; Volume 4758, pp. 125–129. [Google Scholar] [CrossRef]
- Yaniv, D.; Amotz, A.; Finkelstein, I. GPR Mapping of buried monumental retaining walls at biblical Kiriath-Yearim near Jerusalem. Sci. Technol. Archaeol. Res. 2022, 8, 20–30. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Quantitative analysis of self-potential anomalies in archaeological sites of Israel: An overview. Environ. Earth Sci. 2020, 79, 377. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets. Geosciences 2017, 7, 90. [Google Scholar] [CrossRef]
- Ginzburg, A.; Levanon, A. Direct current resistivity measurements in archaeology. Geoexploration 1977, 15, 47–56. [Google Scholar] [CrossRef]
- Barda, L.; Birkenfeld, M.; Milevski, I. GIS Research in Cave K-1 at Quleh and the Distribution of Finds. In Excavations at Quleh and Mazor (West). Iconography and Burial Practices in Southern Levantine Chalcolithic Cemeteries; Milevski, I., Lupu, R., Cohen-Weinberger, A., Eds.; Austrian Academy of Sciences: Vienna, Austria, 2023; pp. 163–169. [Google Scholar]
- Eppelbaum, L.V.; Ben-Avraham, Z.; Katz, Y.; Cloetingh, S.; Kaban, M. Giant quasi-ring mantle structure in the African-Arabian junction: Results derived from the geological-geophysical data integration. Geotectonics 2021, 55, 67–93. [Google Scholar] [CrossRef]
- Reilinger, R.E.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliyev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 2006, 111, B05411. [Google Scholar] [CrossRef]
- Sneh, A.; Bartov, Y.; Rosensaft, M. Geological Map of Israel, 1:200,000; Ministry of National Infrastructure, Geological Survey of Israel: Jerusalem, Israel, 1997. [Google Scholar]
- Greene, C.A.; Gardner, A.S.; Andrews, L.C. Detecting seasonal ice dynamics in satellite images. Cryosphere 2020, 14, 4365–4378. [Google Scholar] [CrossRef]
- Bruno, N.; Giacomini, A.; Roncella, R.; Thoeni, K. Influence of illumination changes on image-based 3d surface reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2021, XLIII-B2-2021, 701–708. [Google Scholar] [CrossRef]
- Rasheed, M.T.; Guo, G.; Shi, D.; Khan, H.; Cheng, X. An Empirical Study on Retinex Methods for Low-Light Image Enhancement. Remote Sens. 2022, 14, 4608. [Google Scholar] [CrossRef]
- Qu, Y.; Deng, F. Sat-Mesh: Learning Neural Implicit Surfaces for Multi-View Satellite Reconstruction. Remote Sens. 2023, 15, 4297. [Google Scholar] [CrossRef]
- Lin, B.; Fan, X.; Li, D.; Guo, Z. High-Performance Polarization Imaging Reconstruction in Scattering System under Natural Light Conditions with an Improved U-Net. Photonics 2023, 10, 204. [Google Scholar] [CrossRef]
- Li, H.; Yin, J.; Jiao, L. An Improved 3D Reconstruction Method for Satellite Images Based on Generative Adversarial Network Image Enhancement. Appl. Sci. 2024, 14, 7177. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Potential of Virtual Earth Observation Constellations in Archaeological Research. Sensors 2019, 19, 4066. [Google Scholar] [CrossRef] [PubMed]
- Stott, D.; Kristiansen, S.M.; Sindbæk, S.M. Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection. Remote Sens. 2019, 11, 1881. [Google Scholar] [CrossRef]
- Kamlah, J.; Riehl, S. Agriculture in the Bronze Age Levant. In A Companion to Ancient Agriculture; Hollander, D., Howe, T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 193–209. [Google Scholar] [CrossRef]
- Price, M.D.; Rowan, Y.M.; Kersel, M.M.; Makarewicz, C.A. Fodder, pasture, and the development of complex society in the Chalcolithic: Isotopic perspectives on animal husbandry at Marj Rabba. Archaeol. Anthropol. Sci. 2020, 12, 95. [Google Scholar] [CrossRef]
- Gilead, I.G. The Chalcolithic Period in the Levant. J. World Prehistory 1988, 2, 397–443. [Google Scholar] [CrossRef]
- Available online: https://he.wikipedia.org/wiki/%D7%9E%D7%90%D7%92%D7%A8%D7%99_%D7%9E%D7%99%D7%9D_%D7%91%D7%A8%D7%9E%D7%AA_%D7%94%D7%92%D7%95%D7%9C%D7%9F (accessed on 7 November 2024).
- Sebag, D. The Early Bronze Age Dwellings in the Southern Levant. Bull. Cent. Rech. Français À Jérusalem 2005, 16, 222–235. Available online: http://journals.openedition.org/bcrfj/256 (accessed on 7 November 2024).
- Saidel, B.A. Talking Trash: Observations on the Abandonment of Broadroom Structures in Southern Sinai During the Early Bronze Age II. In Daily Life, Materiality, and Complexity in Early Urban Communities of the Southern Levant: Papers in Honor of Walter E. Rast and R. Thomas Schaub; Chesson, M.S., Ed.; Penn State University Press: University Park, PA, USA, 2011; pp. 173–184. [Google Scholar] [CrossRef]
- Azizeh, W.A. The Copper Age. The Chalcolithic Period (4500–3600 BC). In Atlas of Jordan; Ababsa, M., Ed.; Presses de l’Ifpo: Beirut, Lebanon, 2013; pp. 114–116. [Google Scholar] [CrossRef]
- Abu-Azizeh, W.; Tarawneh, M.; Abudanah, F.; Twaissi, S.; Al-Salameen, A. Variability within consistency: Cairns and funerary practices of the Late Neolithic/Early Chalcolithic in the Al-Thulaythuwat area, southern Jordan. Levant 2014, 46, 161–185. [Google Scholar] [CrossRef]
- Frumin, S.; Melamed, Y.; Maeir, A.M.; Greenfield, H.J.; Weiss, E. Agricultural subsistence, land use and long-distance mobility within the Early Bronze Age southern Levant: Archaeobotanical evidence from the urban site of Tell eṣ-Ṣâfī/Gath. J. Archaeol. Sci. Rep. 2021, 37, 102873. [Google Scholar] [CrossRef]
- Sharon, G.; Barash, A.; Eisenberg-Degen, D.; Grosman, L.; Oron, M.; Berger, U. Monumental megalithic burial and rock art tell a new story about the Levant Intermediate Bronze “Dark Ages”. PLoS ONE 2017, 12, e0172969. [Google Scholar] [CrossRef]
- Fraser, J.A. Dolmens in the Levant; Routledge: London, UK, 2018; 394p. [Google Scholar] [CrossRef]
- Available online: https://www.pathsofjordan.net/the-dolmens-an-endangered-heritage-in-jordan (accessed on 7 November 2024).
- Cutillas-Victoria, B.; Lorenzon, M.; Smith, S.L.; Holappa, M.; Lahelma, A. Detecting megalithic structures in the Northern Jordanian Plateau: New data from historical satellite imagery. Archaeol. Res. Asia 2024, 39, 100540. [Google Scholar] [CrossRef]
- Mazar, B. Geshur and Maacah. J. Biblic. Lit. 1961, 80, 16–28. [Google Scholar] [CrossRef]
- Kochavi, M. The Land of Geshur Project: Regional Archaeology of the Southern Golan (1987–1988 Seasons). Isr. Explor. J. 1989, 39, 1–17. Available online: http://www.jstor.org/stable/27926133 (accessed on 7 November 2024).
- Younger, K.L., Jr. A Political History of the Arameans: From Their Origins to the End of Their Polities; SBL Press: Atlanta, Georgia, 2016; 880p. [Google Scholar] [CrossRef]
- Pakkala, J. What Do We Know about Geshur? Scand. J. Old Testam. 2010, 24, 155–173. [Google Scholar] [CrossRef]
- Reed, K.S.; Berger, U.; Sharon, G.; Porat, N. Radiometric dating of Southern Levant dolmens—Applying OSL to resolve an old debate. J. Archaeol. Sci. Rep. 2023, 49, 104019. [Google Scholar] [CrossRef]
- Stewart, C.; Montanaro, R.; Sala, M.; Riccardi, P. Feature Extraction in the North Sinai Desert Using Spaceborne Synthetic Aperture Radar: Potential Archaeological Applications. Remote Sens. 2016, 8, 825. [Google Scholar] [CrossRef]
- Available online: https://www.culture.gov.gr/el/Information/SitePages/view.aspx?nID=4988 (accessed on 7 November 2024).
- Parsons, T. The weight of cities: Urbanization effects on Earth’s subsurface. AGU Adv. 2021, 2, e2020AV000277. [Google Scholar] [CrossRef]
- Zaarur, S.; Matmon, A.; Rotshtein, R. Old basalts, young soils—Age constraints for the Golan Heights plateau volcanic soils. Earth Surf. Process. Landf. 2024, 49, 1796–1806. [Google Scholar] [CrossRef]
- Rim, M. Sand and Soil in the Coastal Plain of Israel: A Study of the Rate of Accumulation. Isr. Explor. J. 1950, 1, 33–48. Available online: https://www.jstor.org/stable/27924422 (accessed on 7 November 2024).
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef]
- Kishcha, P.; Volpov, E.; Starobinets, B.; Alpert, P.; Nickovic, S. Dust Dry Deposition over Israel. Atmosphere 2020, 11, 197. [Google Scholar] [CrossRef]
- Sackett, J.A. The Meaning of Style in Archaeology: A General Model. Am. Antiq. 1977, 42, 369–380. [Google Scholar] [CrossRef]
- Dunnell, R.C. Style and Function: A Fundamental Dichotomy. Am. Antiq. 1978, 43, 192–202. [Google Scholar] [CrossRef]
- Wiessner, P. Style and Social Information in Kalahari San Projectile Points. Am. Antiq. 1983, 48, 253–276. [Google Scholar] [CrossRef]
- Blanco Rotea, R.; Mañana Borrazás, P.; Ayán Vila, X.M. Archaeology of Architecture: Theory, methodology and analysis from Landscape Archaeology. In Archaeotecture: Archaeology of Architecture; British Archaeological Reports. International Series; Ayán Vila, X.M., Blanco Rotea, R., Mañana Borrazás, P., Eds.; British Archaeological Reports Ltd.: Oxford, UK, 2003; Volume 1175, pp. 17–39. [Google Scholar]
- Loughmiller-Cardinal, J.A.; Cardinal, J.S. Use, Purpose, and Function—Letting the Artifacts Speak. Heritage 2020, 3, 587–605. [Google Scholar] [CrossRef]
- Sharon, G.; Berger, U. Rock art in south Levantine dolmens. Asian Archaeol. 2020, 4, 17–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabarova, O.; Birkenfeld, M.; Eppelbaum, L.V. Discussion Points of the Remote Sensing Study and Integrated Analysis of the Archaeological Landscape of Rujm el-Hiri. Remote Sens. 2024, 16, 4239. https://doi.org/10.3390/rs16224239
Khabarova O, Birkenfeld M, Eppelbaum LV. Discussion Points of the Remote Sensing Study and Integrated Analysis of the Archaeological Landscape of Rujm el-Hiri. Remote Sensing. 2024; 16(22):4239. https://doi.org/10.3390/rs16224239
Chicago/Turabian StyleKhabarova, Olga, Michal Birkenfeld, and Lev V. Eppelbaum. 2024. "Discussion Points of the Remote Sensing Study and Integrated Analysis of the Archaeological Landscape of Rujm el-Hiri" Remote Sensing 16, no. 22: 4239. https://doi.org/10.3390/rs16224239
APA StyleKhabarova, O., Birkenfeld, M., & Eppelbaum, L. V. (2024). Discussion Points of the Remote Sensing Study and Integrated Analysis of the Archaeological Landscape of Rujm el-Hiri. Remote Sensing, 16(22), 4239. https://doi.org/10.3390/rs16224239