Changes in Urban Green Spaces in the Pearl River Delta Urban Agglomeration: From the Perspectives of the Area, Spatial Configuration, and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Land-Cover Dataset
2.2.2. NDVI Dataset
2.2.3. Urban Boundary Dataset
2.3. Methods
2.3.1. Transformation Matrix Method
2.3.2. Dynamic Degree Model
2.3.3. Landscape Metrics
3. Results
3.1. Changes in Urban Green-Space Area
3.2. Changes in Landscape Pattern of Urban Green Space
3.3. Changes in Vegetation Greenness
4. Discussion
4.1. Spatiotemporal Patterns of Urban Green Spaces in the PRDUA
4.2. The Influences of Policies on Urban Green Spaces
4.3. Implication and Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN DESA. World Urbanization Prospects: The 2018 Revision, online ed.; Population Division, UN DESA: New York, NY, USA, 2018. [Google Scholar]
- Caprotti, F. Future cities: Moving from technical to human needs. Palgr. Commun. 2018, 4, 35. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Dong, Y.; Zhang, P.; Guo, Y.; Wang, W.; Bao, G. Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban For. Urban Green. 2022, 74, 127635. [Google Scholar] [CrossRef]
- Wu, S.; Lin, X.; Bian, Z.; Lipson, M.; Lafortezza, R.; Liu, Q.; Grimmond, S.; Velasco, E.; Christen, A.; Masson, V.; et al. Satellite observations reveal a decreasing albedo trend of global cities over the past 35 years. Remote Sens. Environ. 2024, 303, 114003. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Xu, D.; Rogora, A. Correlation between cooling effect of green space and surrounding urban spatial form: Evidence from 36 urban green spaces. Build. Environ. 2022, 222, 109375. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Y.; Chiueh, P. High-resolution spatial analysis for the air quality regulation service from urban vegetation: A case study of Taipei City. Sustain. Cities Soc. 2022, 83, 103976. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Y.; Chiueh, P. Nexus of ecosystem service-human health-natural resources: The nature-based solutions for urban PM2.5 pollution. Sustain. Cities Soc. 2023, 91, 104441. [Google Scholar] [CrossRef]
- Neo, L.; Chong, K.Y.; Lindsay, S.; Middleton, D.J.; Tan, P.Y.; Er, K.B.H. A botanical oasis rather than a biological desert: Rediscoveries, new species and new records in a tropical city. Plants People Planet 2024, 6, 697–709. [Google Scholar] [CrossRef]
- Spotswood, E.N.; Beller, E.E.; Grossinger, R.; Grenier, J.L.; Heller, N.E.; Aronson, M.F.J. The Biological Deserts Fallacy: Cities in Their Landscapes Contribute More than We Think to Regional Biodiversity. Bioscience 2021, 71, 148–160. [Google Scholar] [CrossRef]
- Yao, H.; Li, Z.; Geisen, S.; Qiao, Z.; Breed, M.F.; Sun, X. Degree of urbanization and vegetation type shape soil biodiversity in city parks. Sci. Total Environ. 2023, 899, 166437. [Google Scholar] [CrossRef]
- Guo, H.; Du, E.; Terrer, C.; Jackson, R.B. Global distribution of surface soil organic carbon in urban greenspaces. Nat. Commun. 2024, 15, 806. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhao, T.; Hu, L.; Browning, M.H.E.M.; Heinrich, J.; Dharmage, S.C.; Jalaludin, B.; Knibbs, L.D.; Liu, X.; Luo, Y.; et al. Greenspace and human health: An umbrella review. Innovation 2021, 2, 100164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tan, P.Y.; Gan, D.R.Y.; Samsudin, R. Assessment of mediators in the associations between urban green spaces and self-reported health. Landsc. Urban Plan. 2022, 226, 104503. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Qin, B. The relationship between urban greenness and mental health: A national-level study of China. Landsc. Urban Plan. 2023, 238, 104830. [Google Scholar] [CrossRef]
- Esperon-Rodriguez, M.; Tjoelker, M.G.; Lenoir, J.; Baumgartner, J.B.; Beaumont, L.J.; Nipperess, D.A.; Power, S.A.; Richard, B.; Rymer, P.D.; Gallagher, R.V. Climate change increases global risk to urban forests. Nat. Clim. Change 2022, 12, 950–955. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Ren, Z.; Wang, G.; Guo, Y.; Wang, C.; Ma, Z. Rapid urbanization and meteorological changes are reshaping the urban vegetation pattern in urban core area: A national 315-city study in China. Sci. Total Environ. 2023, 904, 167269. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Zohner, C.M.; Crowther, T.W.; Li, M.; Shen, F.; Guo, M.; Qin, J.; Yao, L.; Zhou, C. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 2022, 8, eabo0095. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Rau, G.C.; Ekström, M.; O Carroll, D.M.; Bates, A.J. Global climate-driven trade-offs between the water retention and cooling benefits of urban greening. Nat. Commun. 2022, 13, 518. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, S.; Liu, S.; Valbuena, R.; Smith, A.; Zhan, Y.; Shi, Y.; Ning, Y.; Feng, S.; Gao, H.; et al. Long-term satellite observations show continuous increase of vegetation growth enhancement in urban environment. Sci. Total Environ. 2023, 898, 165515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, W.; Zhu, H.; You, Y.; Zhao, C.; Gu, X.; Liu, M. Vegetation growth enhancement modulated by urban development status. Sci. Total Environ. 2023, 883, 163626. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Bao, W.; Yang, Y.; Fu, M. How do government policies promote greening? Evidence from China. Land Use Policy 2021, 104, 105389. [Google Scholar] [CrossRef]
- Mell, I.C.; Henneberry, J.; Hehl-Lange, S.; Keskin, B. Promoting urban greening: Valuing the development of green infrastructure investments in the urban core of Manchester, UK. Urban For. Urban Green. 2013, 12, 296–306. [Google Scholar] [CrossRef]
- Shen, G. Three decades of urban forestry in China. Urban For. Urban Green. 2023, 82, 127877. [Google Scholar] [CrossRef]
- Zhang, X.; Brandt, M.; Tong, X.; Tong, X.; Zhang, W.; Fensholt, R. Urban core greening balances browning in urban expansion areas in China during recent decades. J. Remote Sens. 2024, 4, 0112. [Google Scholar] [CrossRef]
- Feng, F.; Yang, X.; Jia, B.; Li, X.; Li, X.; Xu, C.; Wang, K. Variability of urban fractional vegetation cover and its driving factors in 328 cities in China. Sci. China Earth Sci. 2024, 67, 466–482. [Google Scholar] [CrossRef]
- Chen, J.; Kinoshita, T.; Li, H.; Luo, S.; Su, D. Which green is more equitable? A study of urban green space equity based on morphological spatial patterns. Urban For. Urban Green. 2024, 91, 128178. [Google Scholar] [CrossRef]
- Yan, L.; Jia, W.; Zhao, S. The Cooling Effect of Urban Green Spaces in Metacities: A Case Study of Beijing, China’s Capital. Remote Sens. 2021, 13, 4601. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, Z.; Huang, X.; Altan, O.; Hu, B. Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area, China. Int. J. Appl. Earth Obs. 2022, 113, 103001. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Zheng, Z.; Wu, Z. Spatiotemporal coupling analysis between human footprint and ecosystem service value in the highly urbanized Pearl River Delta urban Agglomeration, China. Ecol. Indic. 2023, 148, 110033. [Google Scholar] [CrossRef]
- Geng, S.; Zhou, X.; Zhang, H.; Yang, L.; Sun, Z.; Yan, X.; Liu, M. Climatic and Anthropogenic Contributions to Vegetation Changes in Guangdong Province of South China. Remote Sens. 2023, 15, 5377. [Google Scholar] [CrossRef]
- Geng, S.; Zhang, H.; Xie, F.; Li, L.; Yang, L. Vegetation Dynamics under Rapid Urbanization in the Guangdong-Hong Kong-Macao Greater Bay Area Urban Agglomeration during the Past Two Decades. Remote Sens. 2022, 14, 3993. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, J.; Xu, Z.; Wang, X.; Meersmans, J. Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosyst. Serv. 2021, 49, 101274. [Google Scholar] [CrossRef]
- Xu, D.; Bai, T.; Song, Y.; Xia, Z.; Duan, X.; Santamouris, M.; Cui, Y. Reassessing the climate mitigation potential of Chinese ecological restoration: The undiscovered potential of urban. Innov. Geosci. 2024, 2, 100068. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Xia, C. Towards a greening city: How does regional cooperation promote urban green space in the Guangdong-Hong Kong-Macau Greater Bay Area? Urban For. Urban Green. 2023, 86, 128033. [Google Scholar] [CrossRef]
- Mu, X.; Qiu, J.; Cao, B.; Cai, S.; Niu, K.; Yang, X. Mapping Soil Erosion Dynamics (1990–2020) in the Pearl River Basin. Remote Sens. 2022, 14, 5949. [Google Scholar] [CrossRef]
- Ou, Y.; Bao, Z.; Ng, S.T.; Song, W.; Chen, K. Land-use carbon emissions and built environment characteristics: A city-level quantitative analysis in emerging economies. Land Use Policy 2024, 137, 107019. [Google Scholar] [CrossRef]
- Song, C.; Yang, J.; Wu, F.; Xiao, X.; Xia, J.; Li, X. Response characteristics and influencing factors of carbon emissions and land surface temperature in Guangdong Province, China. Urban Clim. 2022, 46, 101330. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Hu, Y.; Peng, Y.; Liu, L.; Su, S.; Wang, W.; Wu, J. Multifunctional trade-off/synergy relationship of cultivated land in Guangdong: A long time series analysis from 2010 to 2030. Ecol. Indic. 2023, 154, 110700. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Li, S.; Guo, C.; Yang, X.; Xu, Y.; Yue, F.; Peng, H.; Chen, Y.; Gu, L.; et al. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China. Land 2023, 12, 1267. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Cong, N.; Tian, L.; Zhao, G.; Zheng, Z.; Gao, J.; Zhu, Y.; Zhang, Y. Coarse spatial resolution remote sensing data with AVHRR and MODIS miss the greening area compared with the Landsat data in Chinese drylands. Front. Plant Sci. 2023, 14, 1129665. [Google Scholar] [CrossRef]
- Meng, Y.; Hou, B.; Ding, C.; Huang, L.; Guo, Y.; Tang, Z. Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis. GISci. Remote Sens. 2023, 60, 2185980. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, W.; Yu, C.; Chen, H.; Tan, Y. Mapping Cropland Abandonment in Mountainous Areas in China Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1145. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, B.; Yan, Y.; Lin, Y.; Wong, H.; Wong, S.Y.; Chung, R.Y. Associations of residential greenness with unhealthy consumption behaviors: Evidence from high-density Hong Kong using street-view and conventional exposure metrics. Int. J. Hyg. Environ. Health 2023, 249, 114145. [Google Scholar] [CrossRef]
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020, 15, 94044. [Google Scholar] [CrossRef]
- Chen, B.; Wu, S.; Song, Y.; Webster, C.; Xu, B.; Gong, P. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 2022, 13, 4636. [Google Scholar] [CrossRef]
- Chen, B.; Wu, S.; Jin, Y.; Song, Y.; Wu, C.; Venevsky, S.; Xu, B.; Webster, C.; Gong, P. Wildfire risk for global wildland-urban interface areas. Nat. Sustain. 2024, 7, 474–484. [Google Scholar] [CrossRef]
- Wu, S.; Chen, B.; Webster, C.; Xu, B.; Gong, P. Improved human greenspace exposure equality during 21st century urbanization. Nat. Commun. 2023, 14, 6460. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K. Spatial-temporal patterns and influencing factors of ecological land degradation-restoration in Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2021, 794, 148671. [Google Scholar] [CrossRef]
- Du, J.; Fu, Q.; Fang, S.; Wu, J.; He, P.; Quan, Z. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol. Indic. 2019, 107, 105458. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Chao, L.; Li, Q.; Dong, W.; Yang, Y.; Guo, Z.; Huang, B.; Zhou, L.; Jiang, Z.; Zhai, P.; Jones, P. Vegetation Greening Offsets Urbanization-Induced Fast Warming in Guangdong, Hong Kong, and Macao Region (GHMR). Geophys. Res. Lett. 2021, 48, e2021GL095217. [Google Scholar] [CrossRef]
- Yu, S.; Leichtle, T.; Zhang, Z.; Liu, F.; Wang, X.; Yan, X.; Taubenböck, H. Does urban growth mean the loss of greenness? A multi-temporal analysis for Chinese cities. Sci. Total Environ. 2023, 898, 166373. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Xiang, J.; Wu, L.; Wang, D. Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environ. Sci. Pollut. Res. 2019, 26, 32866–32879. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Zeng, Y.; Cheng, B.; Li, H. Designating National Forest Cities in China: Does the policy improve the urban living environment? For. Policy Econ. 2021, 125, 102400. [Google Scholar] [CrossRef]
- Yang, J.; Huang, C.; Zhang, Z.; Wang, L. The temporal trend of urban green coverage in major Chinese cities between 1990 and 2010. Urban For. Urban Green. 2014, 13, 19–27. [Google Scholar] [CrossRef]
- Liu, C.; Song, C.; Ye, S.; Cheng, F.; Zhang, L.; Li, C. Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years. Land Use Policy 2023, 131, 106733. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Cai, Y. Urban Trees Expansion and Exposure Improvement in China: Insights From Satellite Observations (1985–2023). IEEE J.-Stars 2024, 17, 9694–9705. [Google Scholar] [CrossRef]
- Li, Y.; Svenning, J.; Zhou, W.; Zhu, K.; Abrams, J.F.; Lenton, T.M.; Ripple, W.J.; Yu, Z.; Teng, S.N.; Dunn, R.R.; et al. Green spaces provide substantial but unequal urban cooling globally. Nat. Commun. 2024, 15, 7108. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Qiu, S.; Tan, X.; Zhuang, Y. Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Li, D.; Yang, Y.; Xia, F.; Sun, W.; Li, X.; Xie, Y. Exploring the influences of different processes of habitat fragmentation on ecosystem services. Landsc. Urban Plan. 2022, 227, 104544. [Google Scholar] [CrossRef]
City | Subregions | Area (hm2/a) | NP (ind/a) | PD (ind/(km2·a)) | AI (%/a) | NDVI |
---|---|---|---|---|---|---|
GZ | O | −274.79 ** | −100.21 ** | 3.91 ** | −0.59 ** | 0.0044 ** |
E | −2990.70 ** | 176.17 ** | 0.34 ** | −0.24 ** | 0.0027 ** | |
R | −494.62 ** | −109.52 ** | −0.02 ** | −0.02 ** | 0.0069 ** | |
SZ | O | −157.81 ** | −65.86 ** | 2.49 ** | −0.36 ** | 0.0051 ** |
E | −1890.95 ** | −109.55 ** | 0.33 ** | −0.13 ** | 0.0063 ** | |
R | −20.62 ** | −3.83 | −0.01 | −0.03 ** | 0.0050 ** | |
ZH | O | −26.35 ** | −14.76 ** | 3.16 ** | −0.26 ** | 0.0046 ** |
E | −402.09 ** | 36.47 ** | 0.55 ** | −0.24 ** | −0.0007 | |
R | −648.69 ** | 51.86 ** | 0.16 ** | −0.13 ** | 0.0017 ** | |
FS | O | −113.91 ** | −55.51 ** | 3.56 ** | −0.52 ** | 0.0039 ** |
E | −2874.66 ** | 47.64 | 0.50 ** | −0.27 ** | 0.0019 * | |
R | −322.19 ** | −67.86 ** | −0.04 ** | −0.06 ** | 0.0056 ** | |
DG | O | −62.33 ** | −36.71 ** | 3.98 ** | −0.53 ** | 0.0031 ** |
E | −3046.11 ** | −41.99 * | 0.35 ** | −0.15 ** | 0.0043 ** | |
R | −74.68 ** | 11.15 ** | 0.08 ** | −0.07 ** | 0.0059 ** | |
ZS | O | −39.14 ** | −16.00 ** | 2.42 ** | −0.42 ** | 0.0040 ** |
E | −1576.79 ** | 150.69 ** | 0.42 ** | −0.19 ** | 0.0041 ** | |
R | −251.42 ** | 45.23 ** | 0.30 ** | −0.20 ** | 0.0014 | |
JM | O | −72.68 ** | −16.99 ** | 3.79 ** | −0.59 ** | 0.0047 ** |
E | −909.73 ** | 104.63 ** | 0.54 ** | −0.28 ** | 0.0011 | |
R | −992.08 ** | −390.30 ** | −0.04 ** | −0.03 ** | 0.0055 ** | |
ZQ | O | −37.35 ** | −11.01 ** | 1.66 ** | −0.27 ** | 0.0042 ** |
E | −462.86 ** | 79.03 ** | 0.66 ** | −0.40 ** | 0.0006 | |
R | −743.80 ** | −736.57 ** | −0.05 ** | 0.00 | 0.0080 ** | |
HZ | O | −40.75 ** | −13.52 ** | 2.54 ** | −0.39 ** | 0.0042 ** |
E | −1348.99 ** | 68.22 ** | 0.29 ** | −0.22 ** | 0.0024 * | |
R | −331.35 ** | −252.47 ** | −0.02 ** | −0.03 ** | 0.0071 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, T.; Li, S.; Su, L.; Zhang, H. Changes in Urban Green Spaces in the Pearl River Delta Urban Agglomeration: From the Perspectives of the Area, Spatial Configuration, and Quality. Remote Sens. 2024, 16, 4369. https://doi.org/10.3390/rs16234369
Yao T, Li S, Su L, Zhang H. Changes in Urban Green Spaces in the Pearl River Delta Urban Agglomeration: From the Perspectives of the Area, Spatial Configuration, and Quality. Remote Sensing. 2024; 16(23):4369. https://doi.org/10.3390/rs16234369
Chicago/Turabian StyleYao, Tianci, Shengfa Li, Lixin Su, and Hongou Zhang. 2024. "Changes in Urban Green Spaces in the Pearl River Delta Urban Agglomeration: From the Perspectives of the Area, Spatial Configuration, and Quality" Remote Sensing 16, no. 23: 4369. https://doi.org/10.3390/rs16234369
APA StyleYao, T., Li, S., Su, L., & Zhang, H. (2024). Changes in Urban Green Spaces in the Pearl River Delta Urban Agglomeration: From the Perspectives of the Area, Spatial Configuration, and Quality. Remote Sensing, 16(23), 4369. https://doi.org/10.3390/rs16234369