Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements
Abstract
:1. Introduction
- Development of an automated shoreline segmentation system using local measurements collected by USV;
- A method of integrating LiDAR and MBES data with satellite imagery to create segmentation masks;
- Post-processing pipeline for partially segmented shoreline images;
- Performance analysis of the pre-trained encoders used in the U-Net model for shoreline segmentation tasks.
2. Methodology
2.1. LiDAR and MBES
2.2. Unmanned Surface Vehicle
2.3. Proposed System for Shoreline Segmentation
2.3.1. Data Preparation
2.3.2. Processing Module
Algorithm 1: Complete and clean mask using k-NN and morphological operations |
|
3. Experiments
3.1. Collected Data
3.2. Obtained Masks
3.3. Shoreline Comparison
3.4. Training Segmentation Models
- VGG16 [25]—a widely-known CNN architecture known for its simplicity and depth. It comprises only 16 layers (13 of which are convolutional layers).
- ResNet50 [26]—deep network with residual blocks, which provide better information flow within the network. It is used for a variety of tasks that include feature extraction.
- MobileNetV2 [27]—a lightweight model designed to run on edge devices. It contains smaller residual blocks. It is computationally efficient and, despite its size, often very effective.
- InceptionV3 [28]—a deep network that utilizes a combination of convolutional paths across consecutive layers to capture different aspects of the image at various scales.
- EfficientNetB0 [29]—the smallest model in the EfficientNet family with high scaling across the input dimensions. Because of this strategy, it is computationally efficient.
3.4.1. Evaluation Metrics
3.4.2. Training Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prokop, K.; Połap, K.; Włodarczyk-Sielicka, M.; Jaszcz, A. End-to-end system for monitoring the state of rivers using a drone. Front. Environ. Sci. 2023, 11, 1303067. [Google Scholar] [CrossRef]
- Sun, W.; Chen, C.; Liu, W.; Yang, G.; Meng, X.; Wang, L.; Ren, K. Coastline extraction using remote sensing: A review. GISci. Remote Sens. 2023, 60, 2243671. [Google Scholar] [CrossRef]
- Kum, B.C.; Shin, D.H.; Lee, J.H.; Moh, T.; Jang, S.; Lee, S.Y.; Cho, J.H. Monitoring applications for multifunctional unmanned surface vehicles in marine coastal environments. J. Coast. Res. 2018, 1381–1385. [Google Scholar] [CrossRef]
- Sotelo-Torres, F.; Alvarez, L.V.; Roberts, R.C. An Unmanned Surface Vehicle (USV): Development of an Autonomous Boat with a Sensor Integration System for Bathymetric Surveys. Sensors 2023, 23, 4420. [Google Scholar] [CrossRef]
- González-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.; Soto-Valles, F. Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors 2019, 19, 491. [Google Scholar] [CrossRef]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline detection using optical remote sensing: A review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef]
- Scala, P.; Manno, G.; Ciraolo, G. Semantic segmentation of coastal aerial/satellite images using deep learning techniques: An application to coastline detection. Comput. Geosci. 2024, 192, 105704. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline zones identification and 3D coastal mapping using UAV spatial data. ISPRS Int. J. Geo-Inf. 2016, 5, 75. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Y.; Bao, F.; Xu, H.; Yang, Y.; Yan, Q.; Zhong, S.; Yin, H.; Xu, J.; Huang, Z.; et al. Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects. Sci. Total Environ. 2023, 858, 159741. [Google Scholar] [CrossRef]
- Specht, M. Methodology for Performing Bathymetric and Photogrammetric Measurements Using UAV and USV Vehicles in the Coastal Zone. Remote Sens. 2024, 16, 3328. [Google Scholar] [CrossRef]
- Mishra, M.; Chand, P.; Beja, S.K.; Santos, C.A.G.; da Silva, R.M.; Ahmed, I.; Kamal, A.H.M. Quantitative assessment of present and the future potential threat of coastal erosion along the Odisha coast using geospatial tools and statistical techniques. Sci. Total Environ. 2023, 875, 162488. [Google Scholar] [CrossRef]
- Figliomeni, F.G.; Specht, M.; Parente, C.; Specht, C.; Stateczny, A. Modeling and Accuracy Assessment of Determining the Coastline Course Using Geodetic, Photogrammetric and Satellite Measurement Methods: Case Study in Gdynia Beach in Poland. Electronics 2024, 13, 412. [Google Scholar] [CrossRef]
- Azad, S.; Neffati, A.A.; Mahmud, M.; Kaiser, M.S.; Ahmed, M.R.; Kamruzzaman, J. UDTN-RS: A New Underwater Delay Tolerant Network Routing Protocol for Coastal Patrol and Surveillance. IEEE Access 2023, 11, 142780–142793. [Google Scholar] [CrossRef]
- Qiao, Y.; Yin, J.; Wang, W.; Duarte, F.; Yang, J.; Ratti, C. Survey of deep learning for autonomous surface vehicles in marine environments. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3678–3701. [Google Scholar] [CrossRef]
- Khan, A.R.; Ab Razak, M.S.B.; Yusuf, B.B.; Shafri, H.Z.B.M.; Mohamad, N.B. Future prediction of coastal recession using convolutional neural network. Estuar. Coast. Shelf Sci. 2024, 299, 108667. [Google Scholar] [CrossRef]
- Halicki, A.; Specht, M.; Stateczny, A.; Specht, C.; Specht, O. Shoreline extraction based on LiDAR data obtained using an USV. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2023, 17, 445–453. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Miao, H.; Cai, Y.; Wen, Y.; Xiao, C. Deep Visual Waterline Detection for Inland Marine Unmanned Surface Vehicles. Appl. Sci. 2023, 13, 3164. [Google Scholar] [CrossRef]
- Zollini, S.; Dominici, D.; Alicandro, M.; Cuevas-González, M.; Angelats, E.; Ribas, F.; Simarro, G. New Methodology for Shoreline Extraction Using Optical and Radar (SAR) Satellite Imagery. J. Mar. Sci. Eng. 2023, 11, 627. [Google Scholar] [CrossRef]
- Angelini, R.; Luzi, G.; Ribas Prats, F.; Masiero, A.; Mugnai, F. A review and test of shoreline extraction techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 17–24. [Google Scholar] [CrossRef]
- Park, J.; Kang, M.; Lee, Y.; Jung, J.; Choi, H.T.; Choi, J. Multiple autonomous surface vehicles for autonomous cooperative navigation tasks in a marine environment: Development and preliminary field tests. IEEE Access 2023, 11, 36203–36217. [Google Scholar] [CrossRef]
- Luo, J.; Zhuang, J.; Jin, M.; Xu, F.; Su, Y. An energy-efficient path planning method for unmanned surface vehicle in a time-variant maritime environment. Ocean Eng. 2024, 301, 117544. [Google Scholar] [CrossRef]
- Abd Alhattab, Y.; Abidin, Z.B.Z.; Faizabadi, A.R.; Zaki, H.F.; Ibrahim, A.I. Integration of Stereo Vision and moos-IVP for enhanced obstacle detection and navigation in unmanned surface vehicles. IEEE Access 2023, 11, 128932–128956. [Google Scholar] [CrossRef]
- Petrovic, A.; Damaševičius, R.; Jovanovic, L.; Toskovic, A.; Simic, V.; Bacanin, N.; Zivkovic, M.; Spalević, P. Marine vessel classification and multivariate trajectories forecasting using metaheuristics-optimized extreme gradient boosting and recurrent neural networks. Appl. Sci. 2023, 13, 9181. [Google Scholar] [CrossRef]
- Stateczny, A.; Delekta, M. Unmanned surface vehicles HydroDron-1 utilized in the MPSS project. Innow. Metod. Badań Akwenów Portowych Z Wykorzystaniem Bezzałogowych Platf. Nawodnych 2023, 157–168. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Tan, M. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
Backbone | Params | Accuracy (%) | Precision (%) | Dice (%) | IoU (%) |
---|---|---|---|---|---|
VGG16 | 25 M | 90.58 | 84.64 | 83.57 | 71.78 |
ResNet50 | 72 M | 91.05 | 89.53 | 83.57 | 71.78 |
MobileNetV2 | 5 M | 86.47 | 69.02 | 80.62 | 67.54 |
InceptionV3 | 64 M | 96.17 | 95.92 | 93.21 | 87.29 |
EfficientNetB0 | 7 M | 78.81 | 60.88 | 72.34 | 56.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaszcz, A.; Włodarczyk-Sielicka, M.; Stateczny, A.; Połap, D.; Garczyńska, I. Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements. Remote Sens. 2024, 16, 4457. https://doi.org/10.3390/rs16234457
Jaszcz A, Włodarczyk-Sielicka M, Stateczny A, Połap D, Garczyńska I. Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements. Remote Sensing. 2024; 16(23):4457. https://doi.org/10.3390/rs16234457
Chicago/Turabian StyleJaszcz, Antoni, Marta Włodarczyk-Sielicka, Andrzej Stateczny, Dawid Połap, and Ilona Garczyńska. 2024. "Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements" Remote Sensing 16, no. 23: 4457. https://doi.org/10.3390/rs16234457
APA StyleJaszcz, A., Włodarczyk-Sielicka, M., Stateczny, A., Połap, D., & Garczyńska, I. (2024). Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements. Remote Sensing, 16(23), 4457. https://doi.org/10.3390/rs16234457