Reconstruction of High-Resolution Solar Spectral Irradiance Based on Residual Channel Attention Networks
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.1.1. Envisat-1 SCIAMACHY
2.1.2. TSIS-1 SIM
2.1.3. Generation of Training Datasets
2.2. Methods
2.2.1. The Spectral Degradation Model
2.2.2. The Spectral Super-Resolution Optimization Model
2.2.3. Network Architecture
2.2.4. Loss Function
3. Components of the Network Architecture
3.1. Convolutional Layers
3.2. Residual Connections
3.3. Nonlinear Activation Function
3.4. Channel Attention
4. Results
4.1. Model Training
4.2. Evaluation Metrics
4.3. Analysis and Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shapiro, A.I.; Schmutz, W.; Rozanov, E.; Schoell, M.; Nyeki, S. A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 2011, 529, A69. [Google Scholar] [CrossRef]
- Thuillier, G.; Melo, S.M.L.; Lean, J.; Krivova, N.A.; Bolduc, C.; Fomichev, V.I. Analysis of different solar spectral irradiance reconstructions and their impact on solar heating rates. Sol. Phys. 2014, 289, 1115–1142. [Google Scholar] [CrossRef]
- Meehl, G.A.; Washington, W.A.M.; Arblaster, M.; Dai, A. Solar and greenhouse gas forcing and climate response in the twentieth century. J. Clim. 2003, 16, 426–444. [Google Scholar] [CrossRef]
- Eltbaakh, Y.A.; Ruslan, M.H.; Alghoul, M.A.; Othman, M.Y.; Sopian, K.; Fadhel, M.I. Measurement of total and spectral solar irradiance: Overview of existing research-sciencedirect. Renew. Sustain. Energy Rev. 2011, 15, 1403–1426. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.B.; Markham, B.L.; Lau, I.C.; Ong, C.; Byrne, G.; Thankappan, M.; Oliver, S.; Malthus, T.; Fearns, P. Choice of Solar Spectral Irradiance Model for Current and Future Remote Sensing Satellite Missions. Remote Sens. 2023, 15, 3391. [Google Scholar] [CrossRef]
- Green, P.D.; Fox, N.P.; Lobb, D.; Friend, J. The Traceable Radiometry Underpinning Terrestrial and Helio Studies (TRUTHS) mission. In Sensors, Systems, and Next-Generation Satellites XIX, Proceedings of the SPIE Remote Sensing, Toulouse, France, 21–24 September 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9639, pp. 367–376. [Google Scholar]
- Tobin, D.; Holz, R.; Nagle, F.; Revercomb, H. Characterization of the climate absolute radiance and refractivity observatory (CLARREO) ability to serve as an infrared satellite intercalibration reference. J. Geophys. Res. Atmos. 2016, 121, 4258–4271. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, N.; Li, C.; Ding, L.; Schmetz, J. Development of the Chinese space-based radiometric benchmark mission LIBRA. Remote Sens. 2020, 12, 2179. [Google Scholar] [CrossRef]
- Fontenla, J.M.; Harder, J.; Livingston, W.; Snow, M.; Woods, T. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Dobber, M.; Voors, R.; Dirksen, R.; Kleipool, Q.; Levelt, P. The high-resolution solar reference spectrum between 250 and 550 nm and its application to measurements with the ozone monitoring instrument. Sol. Phys. 2008, 249, 281–291. [Google Scholar] [CrossRef]
- Coddington, O.M.; Richard, E.C.; Harber, D.; Pilewskie, P.; Woods, T.N.; Chance, K.; Liu, X.; Sun, K. The TSIS-1 hybrid solar reference spectrum. Geophys. Res. Lett. 2021, 48, e2020GL091709. [Google Scholar] [CrossRef] [PubMed]
- Jansson, P.A. Deconvolution of Images and Spectra; Academic Press, Inc.: Cambridge, MA, USA, 1996. [Google Scholar]
- He, J.; Yuan, Q.; Li, J.; Xiao, Y.; Liu, D.; Shen, H.; Zhang, L. Spectral super-resolution meets deep learning: Achievements and challenges. Inf. Fusion 2023, 97, 101812. [Google Scholar] [CrossRef]
- Hilbig, T.; Weber, M.; Bramstedt, K.; Burrows, J.P.; Krijger, J.M. The new sciamachy reference solar spectral irradiance and its validation. Sol. Phys. 2018, 293, 121. [Google Scholar] [CrossRef]
- Richard, E.; Harber, D.; Coddington, O.; Drake, G.; Woods, T. SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 Spectral Irradiance Monitor (SIM). Remote Sens. 2020, 12, 1818. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G.; Albanie, S. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; p. 99. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yuhas, R.H.; Goetz, A.F.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; NASA Jet Propulsion Laboratory (JPL): La Cañada Flintridge, CA, USA, 1992; Volume 1. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Gardner, J.L. Spectral deconvolution applications for colorimetry. Color Res. Appl. 2014, 39, 430–435. [Google Scholar] [CrossRef]
Data Product | Spectral Resolution | Uncertainty (%) |
---|---|---|
TSIS-1 SIM | 0.25–42 nm | 0.24–0.41 |
SCIAMACHY Channel 3 | 0.44 nm | 1.5 |
Title | RMSE | MAPE | SAM | PSNR | SSIM |
---|---|---|---|---|---|
Janssen iteration | 79.5620 | 3.1580 | 0.0421 | 28.9094 | 0.1641 |
Bandwidth correction | 76.8611 | 3.0373 | 0.0406 | 29.2094 | 0.1937 |
ResNets | 0.7820 | 0.0314 | 0.0009 | 69.0617 | 0.9989 |
Our model | 0.7451 | 0.0302 | 0.0001 | 69.4816 | 0.9994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Weng, J.; Kang, Q.; Li, J. Reconstruction of High-Resolution Solar Spectral Irradiance Based on Residual Channel Attention Networks. Remote Sens. 2024, 16, 4698. https://doi.org/10.3390/rs16244698
Zhang P, Weng J, Kang Q, Li J. Reconstruction of High-Resolution Solar Spectral Irradiance Based on Residual Channel Attention Networks. Remote Sensing. 2024; 16(24):4698. https://doi.org/10.3390/rs16244698
Chicago/Turabian StyleZhang, Peng, Jianwen Weng, Qing Kang, and Jianjun Li. 2024. "Reconstruction of High-Resolution Solar Spectral Irradiance Based on Residual Channel Attention Networks" Remote Sensing 16, no. 24: 4698. https://doi.org/10.3390/rs16244698
APA StyleZhang, P., Weng, J., Kang, Q., & Li, J. (2024). Reconstruction of High-Resolution Solar Spectral Irradiance Based on Residual Channel Attention Networks. Remote Sensing, 16(24), 4698. https://doi.org/10.3390/rs16244698