Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications
Abstract
:1. Introduction
2. Background
2.1. Geodynamic Evolution
2.2. Seismotectonic Framework
2.3. Geodynamic Models
3. Data
3.1. GNSS Data
3.2. Seismicity and Focal Mechanisms Catalog
- GCMT (https://www.globalcmt.org/ accessed on 31 May 2024);
- ISC (http://www.isc.ac.uk/iscgem/index.php accessed on 31 May 2024);
- World Stress Map [93] (https://www.world-stress-map.org/download accessed on 31 May 2024).
4. Method
4.1. Geodetic Strain Rate Field
4.2. FMS Formal Inversion
5. Results
5.1. Strain Rate Field
5.2. Stress Field
5.3. Stress–Strain Comparison
6. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashidi, A.; Derakhshani, R. Strain and Moment Rates from GPS and Seismological Data in Northern Iran: Implications for an Evaluation of Stress Trajectories and Probabilistic Fault Rupture Hazard. Remote Sens. 2022, 14, 2219. [Google Scholar] [CrossRef]
- Palano, M.; González, P.J.; Fernández, J. Strain and Stress Fields along the Gibraltar Orogenic Arc: Constraints on Active Geodynamics. Gondwana Res. 2013, 23, 1071–1088. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Koulakov, I.Y.; Polyansky, O.P. Geodynamics and Stress–Strain Patterns in Different Tectonic Settings. Russ. Geol. Geophys. 2013, 54, 357–380. [Google Scholar] [CrossRef]
- Reyners, M. Stress and Strain from Earthquakes at the Southern Termination of the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2010, 190, 82–88. [Google Scholar] [CrossRef]
- Townend, J.; Zoback, M.D. Stress, Strain, and Mountain Building in Central Japan. J. Geophys. Res. 2006, 111, 2005JB003759. [Google Scholar] [CrossRef]
- Chang, C.-P.; Chang, T.-Y.; Angelier, J.; Kao, H.; Lee, J.-C.; Yu, S.-B. Strain and Stress Field in Taiwan Oblique Convergent System: Constraints from GPS Observation and Tectonic Data. Earth Planet. Sci. Lett. 2003, 214, 115–127. [Google Scholar] [CrossRef]
- Keiding, M.; Lund, B.; Árnadóttir, T. Earthquakes, Stress, and Strain along an Obliquely Divergent Plate Boundary: Reykjanes Peninsula, Southwest Iceland. J. Geophys. Res. 2009, 114, 2008JB006253. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Lippert, P.C.; Li, S.; Huang, W.; Advokaat, E.L.; Spakman, W. Reconstructing Greater India: Paleogeographic, Kinematic, and Geodynamic Perspectives. Tectonophysics 2019, 760, 69–94. [Google Scholar] [CrossRef]
- Khattri, K.N.; Rogers, A.M.; Perkins, D.M.; Algermissen, S.T. A Seismic Hazard Map of India and Adjacent Areas. Tectonophysics 1984, 108, 93–134. [Google Scholar] [CrossRef]
- Bhatia, S.C.; Kumar, M.R.; Gupta, H.K. A Probabilistic Seismic Hazard Map of India and Adjoining Regions. Ann. Geophys. 1999, 42. Available online: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3777 (accessed on 18 December 2024).
- Malik, J.N.; Srivastava, E.; Gadhavi, M.S.; Livio, F.; Sharma, N.; Arora, S.; Parrino, N.; Burrato, P.; Sulli, A. Holocene Surface-Rupturing Paleo-Earthquakes along the Kachchh Mainland Fault: Shaping the Seismic Landscape of Kachchh, Western India. Sci. Rep. 2024, 14, 11612. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, E.; Malik, J.N.; Parrino, N.; Burrato, P.; Sharma, N.; Gadhavi, M.; Sulli, A.; Di Maggio, C.; Morticelli, M.G. Extremely Fast Holocene Coastal Landscape Evolution in the Kachchh Upland (NW India): Clues from a Multidisciplinary Review. J. Maps 2023, 19, 2167617. [Google Scholar] [CrossRef]
- Tian, X.; Chen, Y.; Tseng, T.-L.; Klemperer, S.L.; Thybo, H.; Liu, Z.; Xu, T.; Liang, X.; Bai, Z.; Zhang, X.; et al. Weakly Coupled Lithospheric Extension in Southern Tibet. Earth Planet. Sci. Lett. 2015, 430, 171–177. [Google Scholar] [CrossRef]
- Bettinelli, P.; Avouac, J.-P.; Flouzat, M.; Jouanne, F.; Bollinger, L.; Willis, P.; Chitrakar, G.R. Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. J. Geod. 2006, 80, 567–589. [Google Scholar] [CrossRef]
- Bilham, R.; Larson, K.; Freymueller, J. GPS Measurements of Present-Day Convergence across the Nepal Himalaya. Nature 1997, 386, 61–64. [Google Scholar] [CrossRef]
- Panda, D.; Lindsey, E.O. Overriding Plate Deformation Controls Inferences of Interseismic Coupling Along the Himalayan Megathrust. JGR Solid Earth 2024, 129, e2024JB029819. [Google Scholar] [CrossRef]
- Kumar, P.; Malik, J.N.; Gahalaut, V.K.; Yadav, R.K.; Singh, G. Evidence of Strain Accumulation and Coupling Variation in the Himachal Region of NW Himalaya From Short Term Geodetic Measurements. Tectonics 2023, 42, e2022TC007690. [Google Scholar] [CrossRef]
- Kumar, P.; Malik, J.N.; Gahalaut, V.K. Arc-Parallel Shear and Orogenic Deformation Along the Oblique Himalayan Convergent Plate Margin: Implications from Topographic- and Gradient-Anomaly Profiling in the Himalaya. Pure Appl. Geophys. 2023, 180, 2169–2189. [Google Scholar] [CrossRef]
- Hetényi, G.; Cattin, R.; Berthet, T.; Le Moigne, N.; Chophel, J.; Lechmann, S.; Hammer, P.; Drukpa, D.; Sapkota, S.N.; Gautier, S.; et al. Segmentation of the Himalayas as Revealed by Arc-Parallel Gravity Anomalies. Sci. Rep. 2016, 6, 33866. [Google Scholar] [CrossRef]
- De Sarkar, S.; Mathew, G.; Pande, K. Arc Parallel Extension in Higher and Lesser Himalayas, Evidence from Western Arunachal Himalaya, India. J. Earth Syst. Sci. 2013, 122, 715–727. [Google Scholar] [CrossRef]
- Styron, R.; Taylor, M.; Sundell, K. Accelerated Extension of Tibet Linked to the Northward Underthrusting of Indian Crust. Nat. Geosci. 2015, 8, 131–134. [Google Scholar] [CrossRef]
- Dasgupta, S.; Mukhopadhyay, B.; Mukhopadhyay, M.; Pande, P. Geo- and Seismo- Tectonics of Eastern Himalaya: Exploring Earthquake Source Zones from Foredeep to Tibetan Hinterland. Phys. Chem. Earth Parts A/B/C 2021, 123, 103013. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y. Seismic and GPS Evidence for the Kinematics and the State of Stress of Active Structures in South and South-Central Tibetan Plateau. J. Asian Earth Sci. 2007, 29, 283–295. [Google Scholar] [CrossRef]
- Dewey, J.F. Extensional Collapse of Orogens. Tectonics 1988, 7, 1123–1139. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature 1976, 264, 319–324. [Google Scholar] [CrossRef]
- McCaffrey, R.; Nabelek, J. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology 1998, 26, 691. [Google Scholar] [CrossRef]
- Bird, P. Lateral Extrusion of Lower Crust from under High Topography in the Isostatic Limit. J. Geophys. Res. 1991, 96, 10275–10286. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Dai, J.; Xu, G.; Hou, Y.; Li, X. Propagation of the Deformation and Growth of the Tibetan–Himalayan Orogen: A Review. Earth-Sci. Rev. 2015, 143, 36–61. [Google Scholar] [CrossRef]
- Zelenin, E.; Bachmanov, D.; Garipova, S.; Trifonov, V.; Kozhurin, A. The Active Faults of Eurasia Database (AFEAD): The Ontology and Design behind the Continental-Scale Dataset. Earth Syst. Sci. Data 2022, 14, 4489–4503. [Google Scholar] [CrossRef]
- GEBCO Bathymetric Compilation Group. The GEBCO_2023 Grid—A Continuous Terrain Model of the Global Oceans and Land; GEBCO Bathymetric Compilation Group: Hurst, TX, USA, 2023. [Google Scholar]
- Xiao, W.; Windley, B.F.; Sun, S.; Li, J.; Huang, B.; Han, C.; Yuan, C.; Sun, M.; Chen, H. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef]
- Zhu, R.; Zhao, P.; Zhao, L. Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean. Sci. China Earth Sci. 2022, 65, 1–24. [Google Scholar] [CrossRef]
- Bilham, R. Himalayan Earthquakes: A Review of Historical Seismicity and Early 21st Century Slip Potential. Geol. Soc. Lond. Spec. Publ. 2019, 483, 423–482. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Nábělek, J.; Hetényi, G.; Vergne, J.; Sapkota, S.; Kafle, B.; Jiang, M.; Su, H.; Chen, J.; Huang, B.-S.; Team, T.H.-C. Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment. Science 2009, 325, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Rowley, D.B.; Currie, B.S. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature 2006, 439, 677–681. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Z.; Nie, J.; Chang, L.; Su, G.; Yin, H.; Liang, H.; Pang, Y.; Chen, C.; Jiang, Z.; et al. High-Precision Vertical Movement and Three-Dimensional Deformation Pattern of the Tibetan Plateau. JGR Solid Earth 2022, 127, e2021JB023202. [Google Scholar] [CrossRef]
- Powell, C.M. Continental Underplating Model for the Rise of the Tibetan Plateau. Earth Planet. Sci. Lett. 1986, 81, 79–94. [Google Scholar] [CrossRef]
- Finch, M.; Hasalova, P.; Weinberg, R.F.; Fanning, C.M. Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone, NW Himalaya: Implications for Channel Flow. Geol. Soc. Am. Bull. 2014, 126, 892–924. [Google Scholar] [CrossRef]
- Wiesmayr, G.; Grasemann, B. Eohimalayan Fold and Thrust Belt: Implications for the Geodynamic Evolution of the NW-Himalaya (India). Tectonics 2002, 21, 8-1–8-18. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Zhiliang, C.; Hodges, K.V.; Yuping, L.; Royden, L.H.; Changrong, D.; Jiene, X. The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt. In Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 1992; Volume 269, pp. 1–41. ISBN 978-0-8137-2269-6. [Google Scholar]
- Aikman, A.B.; Harrison, T.M.; Lin, D. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth Planet. Sci. Lett. 2008, 274, 14–23. [Google Scholar] [CrossRef]
- Godin, L.; Grujic, D.; Law, R.D.; Searle, M.P. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones: An Introduction. Geol. Soc. Lond. Spec. Publ. 2006, 268, 1–23. [Google Scholar] [CrossRef]
- Kellett, D.A.; Cottle, J.M.; Larson, K.P. The South Tibetan Detachment System: History, Advances, Definition and Future Directions. Geol. Soc. Lond. Spec. Publ. 2019, 483, 377–400. [Google Scholar] [CrossRef]
- Hodges, K.V.; Burchfiel, B.C.; Royden, L.H.; Chen, Z.; Liu, Y. The Metamorphic Signature of Contemporaneous Extension and Shortening in the Central Himalayan Orogen: Data from the Nyalam Transect, Southern Tibet. J. Metamorph. Geol. 1993, 11, 721–737. [Google Scholar] [CrossRef]
- Kellett, D.A.; Grujic, D. New Insight into the South Tibetan Detachment System: Not a Single Progressive Deformation. Tectonics 2012, 31, 2011TC002957. [Google Scholar] [CrossRef]
- Jamieson, R.A.; Beaumont, C.; Nguyen, M.H.; Grujic, D. Provenance of the Greater Himalayan Sequence and Associated Rocks: Predictions of Channel Flow Models. Geol. Soc. Lond. Spec. Publ. 2006, 268, 165–182. [Google Scholar] [CrossRef]
- Webb, A.A.G.; Schmitt, A.K.; He, D.; Weigand, E.L. Structural and Geochronological Evidence for the Leading Edge of the Greater Himalayan Crystalline Complex in the Central Nepal Himalaya. Earth Planet. Sci. Lett. 2011, 304, 483–495. [Google Scholar] [CrossRef]
- Webb, A.A.G.; Yin, A.; Harrison, T.M.; Célérier, J.; Burgess, W.P. The Leading Edge of the Greater Himalayan Crystalline Complex Revealed in the NW Indian Himalaya: Implications for the Evolution of the Himalayan Orogen. Geology 2007, 35, 955. [Google Scholar] [CrossRef]
- Dal Zilio, L.; Jolivet, R.; Van Dinther, Y. Segmentation of the Main Himalayan Thrust Illuminated by Bayesian Inference of Interseismic Coupling. Geophys. Res. Lett. 2020, 47, e2019GL086424. [Google Scholar] [CrossRef]
- Ghoshal, S.; McQuarrie, N.; Robinson, D.M.; Adhikari, D.P.; Morgan, L.E.; Ehlers, T.A. Constraining Central Himalayan (Nepal) Fault Geometry Through Integrated Thermochronology and Thermokinematic Modeling. Tectonics 2020, 39, e2020TC006399. [Google Scholar] [CrossRef]
- Dasgupta, S.; Mukhopadhyay, M.; Nandy, D.R. Active Transverse Features in the Central Portion of the Himalaya. Tectonophysics 1987, 136, 255–264. [Google Scholar] [CrossRef]
- Bilham, R.; Gaur, V.K.; Molnar, P. Himalayan Seismic Hazard. Science 2001, 293, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tao, T.; Gao, F.; Qu, X.; Zhu, Y.; Huang, J.; Wang, Q. Interseismic Coupling beneath the Sikkim–Bhutan Himalaya Constrained by GPS Measurements and Its Implication for Strain Segmentation and Seismic Activity. Remote Sens. 2020, 12, 2202. [Google Scholar] [CrossRef]
- Michailos, K.; Carpenter, N.S.; Hetényi, G. Spatio-Temporal Evolution of Intermediate-Depth Seismicity Beneath the Himalayas: Implications for Metamorphism and Tectonics. Front. Earth Sci. 2021, 9, 742700. [Google Scholar] [CrossRef]
- Coudurier-Curveur, A.; Tapponnier, P.; Okal, E.; Van Der Woerd, J.; Kali, E.; Choudhury, S.; Baruah, S.; Etchebes, M.; Karakaş, Ç. A Composite Rupture Model for the Great 1950 Assam Earthquake across the Cusp of the East Himalayan Syntaxis. Earth Planet. Sci. Lett. 2020, 531, 115928. [Google Scholar] [CrossRef]
- Ben-Menahem, A.; Aboodi, E.; Schild, R. The Source of the Great Assam Earthquake—An Interplate Wedge Motion. Phys. Earth Planet. Inter. 1974, 9, 265–289. [Google Scholar] [CrossRef]
- Galetzka, J.; Melgar, D.; Genrich, J.F.; Geng, J.; Owen, S.; Lindsey, E.O.; Xu, X.; Bock, Y.; Avouac, J.-P.; Adhikari, L.B.; et al. Slip Pulse and Resonance of the Kathmandu Basin during the 2015 Gorkha Earthquake, Nepal. Science 2015, 349, 1091–1095. [Google Scholar] [CrossRef]
- Lindsey, E.O.; Natsuaki, R.; Xu, X.; Shimada, M.; Hashimoto, M.; Melgar, D.; Sandwell, D.T. Line-of-sight Displacement from ALOS-2 Interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock. Geophys. Res. Lett. 2015, 42, 6655–6661. [Google Scholar] [CrossRef]
- Avouac, J.-P.; Ayoub, F.; Leprince, S.; Konca, O.; Helmberger, D.V. The 2005, Mw 7.6 Kashmir Earthquake: Sub-Pixel Correlation of ASTER Images and Seismic Waveforms Analysis. Earth Planet. Sci. Lett. 2006, 249, 514–528. [Google Scholar] [CrossRef]
- Armijo, R.; Tapponnier, P.; Mercier, J.L.; Han, T. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. J. Geophys. Res. 1986, 91, 13803–13872. [Google Scholar] [CrossRef]
- Taylor, M.; Peltzer, G. Current Slip Rates on Conjugate Strike-slip Faults in Central Tibet Using Synthetic Aperture Radar Interferometry. J. Geophys. Res. 2006, 111, 2005JB004014. [Google Scholar] [CrossRef]
- Ryder, I.; Bürgmann, R.; Fielding, E. Static Stress Interactions in Extensional Earthquake Sequences: An Example from the South Lunggar Rift, Tibet. J. Geophys. Res. 2012, 117, 2012JB009365. [Google Scholar] [CrossRef]
- Bie, L.; Ryder, I.; Nippress, S.E.J.; Bürgmann, R. Coseismic and Post-Seismic Activity Associated with the 2008 Mw 6.3 Damxung Earthquake, Tibet, Constrained by InSAR. Geophys. J. Int. 2014, 196, 788–803. [Google Scholar] [CrossRef]
- Hu, X.; He, P.; Zhang, J. Source Mechanism of the 2020 Mw 6.3 Nima Earthquake Derived from Bayesian Inversions with InSAR Observations: Insight into E-W Extensional Activity in the Central Tibet. Adv. Space Res. 2022, 70, 1721–1736. [Google Scholar] [CrossRef]
- Li, K.; Tapponnier, P.; Xu, X.; Ren, J.; Wang, S.; Zhao, J. Holocene Slip Rate Along the Beng Co Fault and Dextral Strike-Slip Extrusion of Central Eastern Tibet. Tectonics 2022, 41, e2022TC007230. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Tan, K.; Lu, X.; Zuo, X. Slip Model of the 2020 Yutian (Northwestern Tibetan Plateau) Earthquake Derived From Joint Inversion of InSAR and Teleseismic Data. Earth Space Sci. 2021, 8, e2020EA001409. [Google Scholar] [CrossRef]
- Xie, C.; Lei, X.; Wu, X.; Hu, X. Short- and Long-Term Earthquake Triggering along the Strike-Slip Kunlun Fault, China: Insights Gained from the Ms 8.1 Kunlun Earthquake and Other Modern Large Earthquakes. Tectonophysics 2014, 617, 114–125. [Google Scholar] [CrossRef]
- Harrison, T.M.; Copeland, P.; Kidd, W.S.F.; Yin, A. Raising Tibet. Science 1992, 255, 1663–1670. [Google Scholar] [CrossRef]
- England, P.; Houseman, G. Extension during Continental Convergence, with Application to the Tibetan Plateau. J. Geophys. Res. 1989, 94, 17561–17579. [Google Scholar] [CrossRef]
- Teng, J.; Deng, Y.; Badal, J.; Zhang, Y. Moho Depth, Seismicity and Seismogenic Structure in China Mainland. Tectonophysics 2014, 627, 108–121. [Google Scholar] [CrossRef]
- Cao, J.; Shi, Y.; Zhang, H.; Wang, H. Numerical Simulation of GPS Observed Clockwise Rotation around the Eastern Himalayan Syntax in the Tibetan Plateau. Sci. Bull. 2009, 54, 1398–1410. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, S.; Yang, X.; Gan, W.; Dai, C. Geometric and Kinematic Evolution of the Jiali Fault, Eastern Himalayan Syntaxis. J. Asian Earth Sci. 2021, 212, 104722. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, J.; Yuan, X.; Liu, H.; Pei, S. Detailed Configuration of the Underthrusting Indian Lithosphere Beneath Western Tibet Revealed by Receiver Function Images. JGR Solid Earth 2017, 122, 8257–8269. [Google Scholar] [CrossRef]
- Shi, D.; Zhao, W.; Klemperer, S.L.; Wu, Z.; Mechie, J.; Shi, J.; Xue, G.; Su, H. West–East Transition from Underplating to Steep Subduction in the India–Tibet Collision Zone Revealed by Receiver-Function Profiles. Earth Planet. Sci. Lett. 2016, 452, 171–177. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Houseman, G.A.; Xu, T.; Wu, Z.; Yuan, X.; Chen, Y.; Tian, X.; Bai, Z.; Teng, J. The Moho beneath Western Tibet: Shear Zones and Eclogitization in the Lower Crust. Earth Planet. Sci. Lett. 2014, 408, 370–377. [Google Scholar] [CrossRef]
- Kind, R.; Yuan, X.; Saul, J.; Nelson, D.; Sobolev, S.V.; Mechie, J.; Zhao, W.; Kosarev, G.; Ni, J.; Achauer, U.; et al. Seismic Images of Crust and Upper Mantle Beneath Tibet: Evidence for Eurasian Plate Subduction. Science 2002, 298, 1219–1221. [Google Scholar] [CrossRef]
- Styron, R.H.; Taylor, M.H.; Sundell, K.E.; Stockli, D.F.; Oalmann, J.A.G.; Möller, A.; McCallister, A.T.; Liu, D.; Ding, L. Miocene Initiation and Acceleration of Extension in the South Lunggar Rift, Western Tibet: Evolution of an Active Detachment System from Structural Mapping and (U-Th)/He Thermochronology. Tectonics 2013, 32, 880–907. [Google Scholar] [CrossRef]
- Panda, D.; Kundu, B.; Santosh, M. Oblique Convergence and Strain Partitioning in the Outer Deformation Front of NE Himalaya. Sci. Rep. 2018, 8, 10564. [Google Scholar] [CrossRef]
- Styron, R.H.; Taylor, M.H.; Murphy, M.A. Oblique Convergence, Arc-Parallel Extension, and the Role of Strike-Slip Faulting in the High Himalaya. Geosphere 2011, 7, 582–596. [Google Scholar] [CrossRef]
- Saylor, J.; DeCelles, P.; Gehrels, G.; Murphy, M.; Zhang, R.; Kapp, P. Basin Formation in the High Himalaya by Arc-Parallel Extension and Tectonic Damming: Zhada Basin, Southwestern Tibet. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Beaumont, C.; Jamieson, R.A.; Nguyen, M.H.; Lee, B. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature 2001, 414, 738–742. [Google Scholar] [CrossRef]
- Copley, A.; McKenzie, D. Models of Crustal Flow in the India-Asia Collision Zone. Geophys. J. Int. 2007, 169, 683–698. [Google Scholar] [CrossRef]
- Rey, P.F.; Teyssier, C.; Whitney, D.L. Limit of Channel Flow in Orogenic Plateaux. Lithosphere 2010, 2, 328–332. [Google Scholar] [CrossRef]
- Herring, T.A.; Floyd, M.; Perry, M.; King, R.W.; McClusky, S.C. 2018—GAMIT-GLOBK for GNSS; Massachusetts Institute of Technology: Cambridge, MA, USA, 2018; pp. 1–48. [Google Scholar]
- Billi, A.; Cuffaro, M.; Orecchio, B.; Palano, M.; Presti, D.; Totaro, C. Retracing the Africa–Eurasia Nascent Convergent Boundary in the Western Mediterranean Based on Earthquake and GNSS Data. Earth Planet. Sci. Lett. 2023, 601, 117906. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. JGR Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. JGR Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Hao, M.; Li, Y.; Zhuang, W. Crustal Movement and Strain Distribution in East Asia Revealed by GPS Observations. Sci. Rep. 2019, 9, 16797. [Google Scholar] [CrossRef]
- Frohling, E.; Szeliga, W. GPS Constraints on Interplate Locking within the Makran Subduction Zone. Geophys. J. Int. 2016, 205, 67–76. [Google Scholar] [CrossRef]
- Sparacino, F.; Palano, M.; Peláez, J.A.; Fernández, J. Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sens. 2020, 12, 952. [Google Scholar] [CrossRef]
- Altamimi, Z.; Métivier, L.; Rebischung, P.; Rouby, H.; Collilieux, X. ITRF2014 Plate Motion Model. Geophys. J. Int. 2017, 209, 1906–1912. [Google Scholar] [CrossRef]
- Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K.; Müller, B.; Reinecker, J.; Reiter, K.; Tingay, M.; Wenzel, F.; Xie, F.; et al. The World Stress Map Database Release 2016: Crustal Stress Pattern across Scales. Tectonophysics 2018, 744, 484–498. [Google Scholar] [CrossRef]
- De La Torre, T.L.; Monsalve, G.; Sheehan, A.F.; Sapkota, S.; Wu, F. Earthquake Processes of the Himalayan Collision Zone in Eastern Nepal and the Southern Tibetan Plateau. Geophys. J. Int. 2007, 171, 718–738. [Google Scholar] [CrossRef]
- Ali, S.M.; Shanker, D. Study of Seismicity in the NW Himalaya and Adjoining Regions Using IMS Network. J. Seism. Seismol. 2017, 21, 317–334. [Google Scholar] [CrossRef]
- Bai, L.; Liu, H.; Ritsema, J.; Mori, J.; Zhang, T.; Ishikawa, Y.; Li, G. Faulting Structure above the Main Himalayan Thrust as Shown by Relocated Aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, Earthquake. Geophys. Res. Lett. 2016, 43, 637–642. [Google Scholar] [CrossRef]
- Chandra, U. Seismicity, Earthquake Mechanisms and Tectonics along the Himalayan Mountain Range and Vicinity. Phys. Earth Planet. Inter. 1978, 16, 109–131. [Google Scholar] [CrossRef]
- Chen, W.; Molnar, P. Source Parameters of Earthquakes and Intraplate Deformation beneath the Shillong Plateau and the Northern Indoburman Ranges. J. Geophys. Res. 1990, 95, 12527–12552. [Google Scholar] [CrossRef]
- Han, C.; Huang, Z.; Xu, M.; Wang, L.; Mi, N.; Yu, D.; Li, H. Focal Mechanism and Stress Field in the Northeastern Tibetan Plateau: Insight into Layered Crustal Deformations. Geophys. J. Int. 2019, 218, 2066–2078. [Google Scholar] [CrossRef]
- Kayal, J.R.; Arefiev, S.S.; Baruah, S.; Hazarika, D.; Gogoi, N.; Gautam, J.L.; Baruah, S.; Dorbath, C.; Tatevossian, R. Large and Great Earthquakes in the Shillong Plateau–Assam Valley Area of Northeast India Region: Pop-up and Transverse Tectonics. Tectonophysics 2012, 532, 186–192. [Google Scholar] [CrossRef]
- Kumar, A.; Mitra, S.; Suresh, G. Seismotectonics of the Eastern Himalayan and Indo-Burman Plate Boundary Systems: Seismotectonics of Northeast of India. Tectonics 2015, 34, 2279–2295. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, C.; Lü, J.; Zhou, L.; Zheng, S. Characteristics of Focal Mechanisms and the Stress Field in the Southeastern Margin of the Tibetan Plateau. Pure Appl. Geophys. 2016, 173, 2687–2710. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Dasgupta, S. Deep Structure and Tectonics of the Burmese Arc: Constraints from Earthquake and Gravity Data. Tectonophysics 1988, 149, 299–322. [Google Scholar] [CrossRef]
- Nandy, D.R.; Dasgupta, S. Seismotectonic Domains of Northeastern India and Adjacent Areas. Phys. Chem. Earth 1991, 18, 371–384. [Google Scholar] [CrossRef]
- O’Kane, A.; Copley, A.; Mitra, S.; Wimpenny, S. The Geometry of Active Shortening in the Northwest Himalayas and the Implications for Seismic Hazard. Geophys. J. Int. 2022, 231, 2009–2033. [Google Scholar] [CrossRef]
- Parija, M.P.; Kumar, S.; Tiwari, V.M.; Rao, N.P.; Kumar, N.; Biswal, S.; Singh, I. Microseismicity, Tectonics and Seismic Potential in the Western Himalayan Segment, NW Himalaya, India. J. Asian Earth Sci. 2018, 159, 1–16. [Google Scholar] [CrossRef]
- Paul, H.; Mitra, S.; Bhattacharya, S.N.; Suresh, G. Active Transverse Faulting within Underthrust Indian Crust beneath the Sikkim Himalaya. Geophys. J. Int. 2015, 201, 1072–1083. [Google Scholar] [CrossRef]
- Rastogi, B.K. Earthquake Mechanisms and Plate Tectonics in the Himalayan Region. Tectonophysics 1974, 21, 47–56. [Google Scholar] [CrossRef]
- Wang, X.; Wei, S.; Wu, W. Double-Ramp on the Main Himalayan Thrust Revealed by Broadband Waveform Modeling of the 2015 Gorkha Earthquake Sequence. Earth Planet. Sci. Lett. 2017, 473, 83–93. [Google Scholar] [CrossRef]
- Yadav, D.K.; Kumar, N.; Hazarika, D.; Yadav, D.N.; Wadhawan, M. Seismicity and Tectonics of Kinnaur Himalaya and Adjoining Region Inferred from Focal Mechanism Solutions and Stress Tensor Inversion. Himal. Geol. 2017, 38, 49–55. [Google Scholar]
- Zhu, L.; Helmberger, D.V. Intermediate Depth Earthquakes beneath the India-Tibet Collision Zone. Geophys. Res. Lett. 1996, 23, 435–438. [Google Scholar] [CrossRef]
- Kusumawati, D.; Sahara, D.P.; Puspito, N.T.; Baskara, A.W.; Kurniawan, A.; Tanihaha, W.; Solihin, L.J.J.; Pratama, M.D.; Patimah, S.H.; Sasmi, A.T.; et al. Moment Tensor Inversion Implementation in Determining Focal Mechanism Solution of Palu-Koro and Matano Fault Events: Processing Strategy. IOP Conf. Ser. Earth Environ. Sci. 2023, 1227, 012043. [Google Scholar] [CrossRef]
- Adinolfi, G.M.; De Matteis, R.; De Nardis, R.; Zollo, A. A Functional Tool to Explore the Reliability of Micro-Earthquake Focal Mechanism Solutions for Seismotectonic Purposes. Solid Earth 2022, 13, 65–83. [Google Scholar] [CrossRef]
- Baruah, S.; Saikia, S.; Baruah, S.; Bora, P.K.; Tatevossian, R.; Kayal, J.R. The September 2011 Sikkim Himalaya Earthquake Mw 6.9: Is It a Plane of Detachment Earthquake? Geomat. Nat. Hazards Risk 2016, 7, 248–263. [Google Scholar] [CrossRef]
- Zhang, Z.; Klemperer, S.; Bai, Z.; Chen, Y.; Teng, J. Crustal Structure of the Paleozoic Kunlun Orogeny from an Active-Source Seismic Profile between Moba and Guide in East Tibet, China. Gondwana Res. 2011, 19, 994–1007. [Google Scholar] [CrossRef]
- Zoback, M.L. First- and Second-order Patterns of Stress in the Lithosphere: The World Stress Map Project. J. Geophys. Res. 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, M.; Zeng, Y.; Wang, F. Optimal Interpolation of Spatially Discretized Geodetic Data. Bull. Seismol. Soc. Am. 2015, 105, 2117–2127. [Google Scholar] [CrossRef]
- Palano, M.; Imprescia, P.; Agnon, A.; Gresta, S. An Improved Evaluation of the Seismic/Geodetic Deformation-Rate Ratio for the Zagros Fold-and-Thrust Collisional Belt. Geophys. J. Int. 2018, 213, 194–209. [Google Scholar] [CrossRef]
- Nucci, R.; Serpelloni, E.; Faenza, L.; Garcia, A.; Belardinelli, M.E. Comparative Analysis of Methods to Estimate Geodetic Strain Rates from GNSS Data in Italy. Ann. Geophys. 2024, 66, DM531. [Google Scholar] [CrossRef]
- Vavryčuk, V. Iterative Joint Inversion for Stress and Fault Orientations from Focal Mechanisms. Geophys. J. Int. 2014, 199, 69–77. [Google Scholar] [CrossRef]
- Bott, M.H.P. The Mechanics of Oblique Slip Faulting. Geol. Mag. 1959, 96, 109–117. [Google Scholar] [CrossRef]
- Wallace, R.E. Geometry of Shearing Stress and Relation to Faulting. J. Geol. 1951, 59, 118–130. [Google Scholar] [CrossRef]
- Gephart, J.W.; Forsyth, D.W. An Improved Method for Determining the Regional Stress Tensor Using Earthquake Focal Mechanism Data: Application to the San Fernando Earthquake Sequence. J. Geophys. Res. 1984, 89, 9305–9320. [Google Scholar] [CrossRef]
- Vavryčuk, V.; Bouchaala, F.; Fischer, T. High-Resolution Fault Image from Accurate Locations and Focal Mechanisms of the 2008 Swarm Earthquakes in West Bohemia, Czech Republic. Tectonophysics 2013, 590, 189–195. [Google Scholar] [CrossRef]
- Lund, B.; Slunga, R. Stress Tensor Inversion Using Detailed Microearthquake Information and Stability Constraints: Application to Ölfus in Southwest Iceland. J. Geophys. Res. 1999, 104, 14947–14964. [Google Scholar] [CrossRef]
- Michael, A.J. Determination of Stress from Slip Data: Faults and Folds. J. Geophys. Res. 1984, 89, 11517–11526. [Google Scholar] [CrossRef]
- Lund, B.; Townend, J. Calculating Horizontal Stress Orientations with Full or Partial Knowledge of the Tectonic Stress Tensor. Geophys. J. Int. 2007, 170, 1328–1335. [Google Scholar] [CrossRef]
- Ge, W.; Molnar, P.; Shen, Z.; Li, Q. Present-day Crustal Thinning in the Southern and Northern Tibetan Plateau Revealed by GPS Measurements. Geophys. Res. Lett. 2015, 42, 5227–5235. [Google Scholar] [CrossRef]
- Milnes, A.G. Aspects of “Strike-Slip” or Wrench Tectonics an Introductory Discussion. Nor. J. Geol. 1994, 74, 129–133. [Google Scholar]
- Chang, H.; An, Z.; Liu, W.; Ao, H.; Qiang, X.; Song, Y.; Lai, Z. Quaternary Structural Partitioning within the Rigid Tarim Plate Inferred from Magnetostratigraphy and Sedimentation Rate in the Eastern Tarim Basin in China. Quat. Res. 2014, 81, 424–432. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, M. Cenozoic Deformation of the Tarim Plate and the Implications for Mountain Building in the Tibetan Plateau and the Tian Shan. Tectonics 2002, 21, 9-1–9-17. [Google Scholar] [CrossRef]
- Palano, M. On the Present-Day Crustal Stress, Strain-Rate Fields and Mantle Anisotropy Pattern of Italy. Geophys. J. Int. 2015, 200, 969–985. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.; Armijo, R. On the Mechanics of the Collision between India and Asia. Geol. Soc. Lond. Spec. Publ. 1986, 19, 113–157. [Google Scholar] [CrossRef]
- Vernant, P.; Bilham, R.; Szeliga, W.; Drupka, D.; Kalita, S.; Bhattacharyya, A.K.; Gaur, V.K.; Pelgay, P.; Cattin, R.; Berthet, T. Clockwise Rotation of the Brahmaputra Valley Relative to India: Tectonic Convergence in the Eastern Himalaya, Naga Hills, and Shillong Plateau. JGR Solid Earth 2014, 119, 6558–6571. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. J. Geophys. Res. 2007, 112, 2005JB004120. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology 2004, 32, 809. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.-Z.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; Lai, X.; You, X.; Niu, Z.; Wu, J.; Li, Y.; et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ji, L.; Zhu, L.; Xu, C.; Zhao, C.; Lu, Z.; Wang, Q. Kilometer-Resolution Three-Dimensional Crustal Deformation of Tibetan Plateau from InSAR and GNSS. Sci. China Earth Sci. 2024, 67, 1818–1835. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I.; et al. GPS Velocity Field for the Tien Shan and Surrounding Regions. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Wei, J.; Weifeng, S.; Xiaojing, M. Tectonic Stress Pattern in the Chinese Mainland from the Inversion of Focal Mechanism Data. J. Earth Syst. Sci. 2017, 126, 41. [Google Scholar] [CrossRef]
- Raoof, J.; Mukhopadhyay, S.; Koulakov, I.; Kayal, J.R. 3-D Seismic Tomography of the Lithosphere and Its Geodynamic Implications beneath the Northeast India Region. Tectonics 2017, 36, 962–980. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.; Kumar, A.; Mitra, S. Lateral Variation of Seismic Attenuation in Sikkim Himalaya. Geophys. J. Int. 2017, 208, 257–268. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Sharma, J. Attenuation Characteristics of Garwhal–Kumaun Himalayas from Analysis of Coda of Local Earthquakes. J. Seism. Seismol. 2010, 14, 693–713. [Google Scholar] [CrossRef]
- Stevens, V.L.; Avouac, J.-P. On the Relationship between Strain Rate and Seismicity in the India–Asia Collision Zone: Implications for Probabilistic Seismic Hazard. Geophys. J. Int. 2021, 226, 220–245. [Google Scholar] [CrossRef]
- Malik, J.N.; Arora, S.; Gadhavi, M.S.; Singh, G.; Kumar, P.; Johnson, F.C.; Thakur, M.; Raoof, J. Geological Evidence of Paleo-Earthquakes on a Transverse Right-Lateral Strike-Slip Fault along the NW Himalayan Front: Implications towards Fault Segmentation and Strain Partitioning. J. Asian Earth Sci. 2023, 244, 105518. [Google Scholar] [CrossRef]
- Berthet, T.; Ritz, J.-F.; Ferry, M.; Pelgay, P.; Cattin, R.; Drukpa, D.; Braucher, R.; Hetenyi, G. Active Tectonics of the Eastern Himalaya: New Constraints from the First Tectonic Geomorphology Study in Southern Bhutan. Geology 2014, 42, 427–430. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J. Indian Plate Paleogeography, Subduction and Horizontal Underthrusting below Tibet: Paradoxes, Controversies and Opportunities. Natl. Sci. Rev. 2022, 9, nwac074. [Google Scholar] [CrossRef] [PubMed]
- Rothery, D.A.; Drury, S.A. The Neotectonics of the Tibetan Plateau. Tectonics 1984, 3, 19–26. [Google Scholar] [CrossRef]
- Copley, A.; Avouac, J.-P.; Wernicke, B.P. Evidence for Mechanical Coupling and Strong Indian Lower Crust beneath Southern Tibet. Nature 2011, 472, 79–81. [Google Scholar] [CrossRef]
- Rey, P.; Vanderhaeghe, O.; Teyssier, C. Gravitational Collapse of the Continental Crust: Definition, Regimes and Modes. Tectonophysics 2001, 342, 435–449. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrolungo, F.; Lavecchia, G.; Madarieta-Txurruka, A.; Sparacino, F.; Srivastava, E.; Cirillo, D.; de Nardis, R.; Andrenacci, C.; Bello, S.; Parrino, N.; et al. Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications. Remote Sens. 2024, 16, 4765. https://doi.org/10.3390/rs16244765
Pietrolungo F, Lavecchia G, Madarieta-Txurruka A, Sparacino F, Srivastava E, Cirillo D, de Nardis R, Andrenacci C, Bello S, Parrino N, et al. Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications. Remote Sensing. 2024; 16(24):4765. https://doi.org/10.3390/rs16244765
Chicago/Turabian StylePietrolungo, Federico, Giusy Lavecchia, Asier Madarieta-Txurruka, Federica Sparacino, Eshaan Srivastava, Daniele Cirillo, Rita de Nardis, Carlo Andrenacci, Simone Bello, Nicolò Parrino, and et al. 2024. "Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications" Remote Sensing 16, no. 24: 4765. https://doi.org/10.3390/rs16244765
APA StylePietrolungo, F., Lavecchia, G., Madarieta-Txurruka, A., Sparacino, F., Srivastava, E., Cirillo, D., de Nardis, R., Andrenacci, C., Bello, S., Parrino, N., Sulli, A., & Palano, M. (2024). Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications. Remote Sensing, 16(24), 4765. https://doi.org/10.3390/rs16244765