A Multi-Scale Graph Based on Spatio-Temporal-Radiometric Interaction for SAR Image Change Detection
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Motivation and Contribution
- This paper introduces a multi-scale graph model and devises a well-designed graph fusion strategy, enabling the comprehensive utilization of multi-scale information present in remote sensing images. This approach better represents the intricate relationships among features within the images.
- This study achieves spatio-temporal-radiometric information interaction between graph models by employing graph mapping, which can effectively explore the associations between multi-temporal images and result in more accurate extraction of changes between images.
- Experimental comparisons with several state-of-the-art methods on three datasets demonstrate the competitive performance of the proposed STRMG method, underscoring its strong capabilities in change detection.
2. Methodology
2.1. Pre-Processing
2.2. Multi-Scale Graph Construction
2.3. Fusing the Multi-Scale Graphs
2.4. Spatio-Temporal-Radiometric Interaction
2.5. DI Calculation
2.6. CM Computation by MRF Segmentation
Algorithm 1: STRMG based CD. |
Input: Images of and . Parameters of p and S. Pre-processing: Segment and into patches with different scales. Stack the patches to obtain the multi-scale PGM of and . Computing the DI: Construct the multi-scale graphs of and . Compute the fusion matrices of and . Fuse the multi-scale graphs to obtain graphs of and . Construct the mapped graphs of and . Compute the change probability vector of . Computing the CM: Compute final CM by using MRF segmentation method. |
3. Experiment Results and Discussion
3.1. Experimental Settings
3.2. Experimental Results
3.2.1. Results on the Dataset A
3.2.2. Results on the Dataset B
3.2.3. Results on the Dataset C
3.3. Ablation Study and Discussion
3.3.1. Ablation Study
3.3.2. Parameter Analysis
3.3.3. Test of Different Noise Levels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Benediktsson, J.A.; Falco, N. Land Cover Change Detection Techniques: Very-High-Resolution Optical Images: A Review. IEEE Geosci. Remote. Sens. Mag. 2021, 10, 2–21. [Google Scholar] [CrossRef]
- Wen, D.; Huang, X.; Bovolo, F.; Li, J.; Ke, X.; Zhang, A.; Benediktsson, J.A. Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 68–101. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Li, X.; Kuang, G. SAR Image Change Detection Based on Nonlocal Low-Rank Model and Two-Level Clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 293–306. [Google Scholar] [CrossRef]
- Mastro, P.; Masiello, G.; Serio, C.; Pepe, A. Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations. Remote Sens. 2022, 14, 3323. [Google Scholar] [CrossRef]
- Du, Y.; Zhong, R.; Li, Q.; Zhang, F. TransUNet++ SAR: Change detection with deep learning about architectural ensemble in SAR images. Remote Sens. 2022, 15, 6. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Zhang, L. Fully Convolutional Change Detection Framework with Generative Adversarial Network for Unsupervised, Weakly Supervised and Regional Supervised Change Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9774–9788. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Zhang, C.; Gu, X.; Tan, X.; Atkinson, P.M. Robust unsupervised small area change detection from SAR imagery using deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 173, 79–94. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Process. 2002, 11, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lei, L.; Li, X.; Tan, X.; Kuang, G. Structure Consistency-Based Graph for Unsupervised Change Detection With Homogeneous and Heterogeneous Remote Sensing Images. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 4700221. [Google Scholar] [CrossRef]
- Zheng, X.; Guan, D.; Li, B.; Chen, Z.; Pan, L. Global and Local Graph-Based Difference Image Enhancement for Change Detection. Remote Sens. 2023, 15, 1194. [Google Scholar] [CrossRef]
- Nar, F.; Özgür, A.; Saran, A.N. Sparsity-Driven Change Detection in Multitemporal SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1032–1036. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2972–2982. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef]
- Gong, M.; Cao, Y.; Wu, Q. A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2011, 9, 307–311. [Google Scholar] [CrossRef]
- Ma, J.; Gong, M.; Zhou, Z. Wavelet fusion on ratio images for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1122–1126. [Google Scholar] [CrossRef]
- Hou, B.; Wei, Q.; Zheng, Y.; Wang, S. Unsupervised change detection in SAR image based on gauss-log ratio image fusion and compressed projection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3297–3317. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, C.; Li, J.; Zhang, H. SAR image change detection using saliency extraction and shearlet transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4701–4710. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, L.; Liu, H.; Zhang, X.; Hou, B.; Wang, S. Unsupervised saliency-guided SAR image change detection. Pattern Recognit. 2017, 61, 309–326. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.W.; Jiao, L.; Wang, M. How can despeckling and structural features benefit to change detection on bitemporal SAR images? Remote Sens. 2019, 11, 421. [Google Scholar] [CrossRef]
- Pham, M.T.; Mercier, G.; Michel, J. Change detection between SAR images using a pointwise approach and graph theory. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2020–2032. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H. An object-based graph model for unsupervised change detection in high resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 6209–6227. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Jia, L.; Yang, X.; Dong, Z. Pointwise SAR image change detection using stereo-graph cuts with spatio-temporal information. Remote Sens. Lett. 2019, 10, 421–429. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Yang, X.; Jia, L.; Fang, S. Unsupervised change detection between SAR images based on hypergraphs. ISPRS J. Photogramm. Remote Sens. 2020, 164, 61–72. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Kuang, G.; Liu, L. Graph Signal Processing for Heterogeneous Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4415823. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Kuang, G. Iterative Robust Graph for Unsupervised Change Detection of Heterogeneous Remote Sensing Images. IEEE Trans. Image Process. 2021, 30, 6277–6291. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lei, L.; Li, X.; Sun, H.; Kuang, G. Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern Recognit. 2021, 109, 107598. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Liu, L.; Kuang, G. Structural Regression Fusion for Unsupervised Multimodal Change Detection. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 4504018. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Wu, J.; Kuang, G.; Liu, L. Image Regression With Structure Cycle Consistency for Heterogeneous Change Detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lei, L.; Tan, X.; Guan, D.; Wu, J.; Kuang, G. Structured graph based image regression for unsupervised multimodal change detection. ISPRS J. Photogramm. Remote Sens. 2022, 185, 16–31. [Google Scholar] [CrossRef]
- Chen, H.; Yokoya, N.; Wu, C.; Du, B. Unsupervised Multimodal Change Detection Based on Structural Relationship Graph Representation Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5635318. [Google Scholar] [CrossRef]
- Chen, H.; Yokoya, N.; Chini, M. Fourier domain structural relationship analysis for unsupervised multimodal change detection. ISPRS J. Photogramm. Remote Sens. 2023, 198, 99–114. [Google Scholar] [CrossRef]
- Zheng, X.; Guan, D.; Li, B.; Chen, Z.; Li, X. Change Smoothness-Based Signal Decomposition Method for Multimodal Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2507605. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wei, X.; Chen, J.W.; Jiao, L. Dynamic graph-level neural network for SAR image change detection. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4501005. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H.; Fu, R.; Sun, Y. A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102615. [Google Scholar] [CrossRef]
- Su, H.; Zhang, X.; Luo, Y.; Zhang, C.; Zhou, X.; Atkinson, P.M. Nonlocal feature learning based on a variational graph auto-encoder network for small area change detection using SAR imagery. ISPRS J. Photogramm. Remote Sens. 2022, 193, 137–149. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dong, J.; Zhang, S.; Du, Q. Change detection from synthetic aperture radar images via graph-based knowledge supplement network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1823–1836. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F. How to compare noisy patches? Patch similarity beyond Gaussian noise. Int. J. Comput. Vis. 2012, 99, 86–102. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Li, H.C.; Celik, T.; Longbotham, N.; Emery, W.J. Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2458–2462. [Google Scholar]
- Sun, Y.; Lei, L.; Guan, D.; Li, M.; Kuang, G. Sparse-Constrained Adaptive Structure Consistency-Based Unsupervised Image Regression for Heterogeneous Remote Sensing Change Detection. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 4405814. [Google Scholar] [CrossRef]
- Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, H.; Sun, H.; Ying, W. Multireceiver SAS imagery based on monostatic conversion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10835–10853. [Google Scholar] [CrossRef]
- Yang, P. An imaging algorithm for high-resolution imaging sonar system. Multimed. Tools Appl. 2023, 1–17. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Sun, H. Frequency-domain multireceiver synthetic aperture sonar imagery with Chebyshev polynomials. Electron. Lett. 2022, 58, 995–998. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. An improved imaging algorithm for multi-receiver SAS system with wide-bandwidth signal. Remote Sens. 2021, 13, 5008. [Google Scholar] [CrossRef]
Dataset | Date | Sensor | Location | Image Size | Resolution | Polarizations | Waveband |
---|---|---|---|---|---|---|---|
Dataset A | June 2008–June 2009 | Radarsat-2 | Yellow River Estuary, China | 8 m | HH | C-band | |
Dataset B | June 2008–June 2009 | Radarsat-2 | Yellow River Estuary, China | 8 m | HH | C-band | |
Dataset C | June 2016–April 2017 | COSMO-SkyMed | Guizhou, China | 1 m | HH | X-band |
Methods | AUR ↑ | AUP ↑ | FA ↓ | MR ↓ | OA ↑ | KC ↑ | F1 ↑ |
---|---|---|---|---|---|---|---|
Diff | 0.845 | 0.086 | 0.083 | 0.461 | 0.912 | 0.099 | 0.116 |
LogR | 0.851 | 0.086 | 0.241 | 0.208 | 0.759 | 0.046 | 0.066 |
MeanR | 0.973 | 0.813 | 0.352 | 0.029 | 0.652 | 0.036 | 0.056 |
NbhdR | 0.983 | 0.758 | 0.386 | 0.008 | 0.619 | 0.033 | 0.053 |
SDCD | 0.943 | 0.342 | 0.044 | 0.216 | 0.955 | 0.257 | 0.270 |
INLPG | 0.992 | 0.879 | 0.001 | 0.246 | 0.996 | 0.813 | 0.815 |
DcGANCD | 0.975 | 0.808 | 0.001 | 0.281 | 0.996 | 0.784 | 0.787 |
CWNN | 0.971 | 0.668 | 0.106 | 0.038 | 0.895 | 0.147 | 0.163 |
IRG-McS | 0.954 | 0.229 | 0.020 | 0.197 | 0.978 | 0.429 | 0.438 |
GSPCD | 0.931 | 0.711 | 0.005 | 0.271 | 0.993 | 0.674 | 0.678 |
STRMG | 0.992 | 0.912 | 0.001 | 0.095 | 0.998 | 0.886 | 0.887 |
Methods | AUR ↑ | AUP ↑ | FA ↓ | MR ↓ | OA ↑ | KC ↑ | F1 ↑ |
---|---|---|---|---|---|---|---|
Diff | 0.788 | 0.210 | 0.257 | 0.323 | 0.741 | 0.094 | 0.147 |
LogR | 0.916 | 0.520 | 0.185 | 0.130 | 0.817 | 0.192 | 0.238 |
MeanR | 0.974 | 0.802 | 0.314 | 0.023 | 0.696 | 0.122 | 0.175 |
NbhdR | 0.979 | 0.805 | 0.181 | 0.029 | 0.824 | 0.222 | 0.266 |
SDCD | 0.907 | 0.439 | 0.183 | 0.140 | 0.818 | 0.192 | 0.238 |
INLPG | 0.992 | 0.825 | 0.007 | 0.290 | 0.984 | 0.732 | 0.741 |
DcGANCD | 0.983 | 0.822 | 0.005 | 0.218 | 0.988 | 0.810 | 0.816 |
CWNN | 0.978 | 0.823 | 0.012 | 0.114 | 0.985 | 0.783 | 0.791 |
IRG-McS | 0.977 | 0.515 | 0.013 | 0.160 | 0.983 | 0.751 | 0.760 |
GSPCD | 0.970 | 0.790 | 0.007 | 0.211 | 0.986 | 0.787 | 0.794 |
STRMG | 0.995 | 0.920 | 0.007 | 0.085 | 0.991 | 0.860 | 0.865 |
Methods | AUR ↑ | AUP ↑ | FA ↓ | MR ↓ | OA ↑ | KC ↑ | F1 ↑ |
---|---|---|---|---|---|---|---|
Diff | 0.915 | 0.303 | 0.353 | 0.080 | 0.648 | 0.020 | 0.032 |
LogR | 0.785 | 0.088 | 0.104 | 0.789 | 0.891 | 0.012 | 0.024 |
MeanR | 0.970 | 0.292 | 0.314 | 0.015 | 0.688 | 0.027 | 0.039 |
NbhdR | 0.902 | 0.050 | 0.348 | 0.056 | 0.654 | 0.021 | 0.034 |
SDCD | 0.982 | 0.493 | 0.118 | 0.026 | 0.883 | 0.085 | 0.096 |
INLPG | 0.960 | 0.614 | 0.551 | 0.009 | 0.452 | 0.010 | 0.023 |
DcGANCD | 0.991 | 0.806 | 0.002 | 0.286 | 0.996 | 0.714 | 0.716 |
CWNN | 0.912 | 0.048 | 0.107 | 0.386 | 0.891 | 0.056 | 0.067 |
IRG-McS | 0.930 | 0.247 | 0.005 | 0.439 | 0.993 | 0.488 | 0.492 |
GSPCD | 0.965 | 0.247 | 0.003 | 0.307 | 0.995 | 0.635 | 0.638 |
STRMG | 0.994 | 0.900 | 0.001 | 0.125 | 0.998 | 0.859 | 0.860 |
Methods | AUR ↑ | AUP ↑ | FA ↓ | MR ↓ | OA ↑ | KC ↑ | F1 ↑ |
---|---|---|---|---|---|---|---|
Base | 0.982 | 0.736 | 0.006 | 0.151 | 0.992 | 0.775 | 0.778 |
Base+MsG | 0.987 | 0.851 | 0.004 | 0.198 | 0.994 | 0.809 | 0.812 |
Base+STR | 0.990 | 0.878 | 0.003 | 0.118 | 0.995 | 0.851 | 0.854 |
STRMG | 0.994 | 0.911 | 0.003 | 0.102 | 0.995 | 0.868 | 0.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Jiang, J.; Kou, P.; Wang, S.; Wang, B. A Multi-Scale Graph Based on Spatio-Temporal-Radiometric Interaction for SAR Image Change Detection. Remote Sens. 2024, 16, 560. https://doi.org/10.3390/rs16030560
Zhang P, Jiang J, Kou P, Wang S, Wang B. A Multi-Scale Graph Based on Spatio-Temporal-Radiometric Interaction for SAR Image Change Detection. Remote Sensing. 2024; 16(3):560. https://doi.org/10.3390/rs16030560
Chicago/Turabian StyleZhang, Peijing, Jinbao Jiang, Peng Kou, Shining Wang, and Bin Wang. 2024. "A Multi-Scale Graph Based on Spatio-Temporal-Radiometric Interaction for SAR Image Change Detection" Remote Sensing 16, no. 3: 560. https://doi.org/10.3390/rs16030560
APA StyleZhang, P., Jiang, J., Kou, P., Wang, S., & Wang, B. (2024). A Multi-Scale Graph Based on Spatio-Temporal-Radiometric Interaction for SAR Image Change Detection. Remote Sensing, 16(3), 560. https://doi.org/10.3390/rs16030560