Machine-Learning-Assisted Characterization of Regional Heat Islands with a Spatial Extent Larger than the Urban Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Preprocessing
2.2. Definition of the SUHI Intensity on Each Grid Point in Urban Agglomerations
2.3. Identifying the SUHI and Non-SUHI Zones in Urban Agglomerations
2.4. Estimation of the SUHI Intensity on Each Grid Point in Urban Agglomerations
3. Results
3.1. The SUHI Spatial Pattern and Scale and the Land Surface Thermal Types
3.2. Estimation of the FVC and LST Backgrounds and the SUHI Intensity
3.3. Seasonal Variations of the SUHI Intensity in the YRDUA Region
3.4. Spatial Distribution and Scale of the RF-Estimated SUHI Intensities
3.5. Relative Importance of the RF-Model Input Features
4. Discussion
4.1. Potential Applications of the Quantitative Regional SUHIs in Urban Planning and Decision-Making
4.2. Advantages and Limitations of the Proposed Solution in Quantifying Regional SUHIs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Du, Y.; Xie, Z.Q.; Zeng, Y.; Shi, Y.F.; Wu, J.G. Impact of urban expansion on regional temperature change in the Yangtze River Delta. J. Geogr. Sci. 2007, 17, 387–398. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Du, Y.; Miao, Q.; Zhang, L.L.; Wang, N. An approach to characterizing the spatial pattern and scale of regional heat islands over urban agglomerations. Geophys. Res. Lett. 2022, 49, e2022GL099117. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T. Magnitude of urban heat islands largely explained by climate and population. Nature. 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi–year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations, a systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Sarangi, C.; Tripathi, S.N. Understanding diurnality and interseasonality of a sub-tropical urban heat island. Bound.-Layer Meteor. 2017, 163, 287–309. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.B.; Zhou, Y.Y.; Zhang, T.; Ma, Z.F.; Meng, X.J. Spatial patterns and temporal variations of footprint and intensity of surface urban heat island in 141 China cities. Sustain. Cities Soc. 2022, 77, 103585. [Google Scholar] [CrossRef]
- Yang, C.B.; Yan, F.Q.; Zhang, S.W. Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. J. Environ. Manag. 2020, 265, 110563. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X.H. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 2021, 7, eabb9569. [Google Scholar] [CrossRef]
- Zhang, D.L.; Shou, Y.X.; Dickerson, R.R. Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett. 2009, 36, L24401. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, Y. A case study of the upwind urbanization influence on the urban heat island effects along the Suzhou-Wuxi Corridor. J. Appl. Meteorol. Climatol. 2014, 53, 333–345. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Li, X.M.; Asrar, G.R.; Imhoff, M.; Li, X.C. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605, 426–435. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.H.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.C.; Zhao, S.Q.; Zhang, L.X.; Sun, G.; Liu, Y.Q. The footprint of urban heat island effect in China. Sci. Rep. 2015, 5, 11160. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Gao, C.; Li, J.L.; Wang, R.; Liu, J. Evaluating urban heat island intensity and its associated determinants of towns and cities continuum in the Yangtze River Delta urban agglomerations. Sustain. Cities Soc. 2019, 50, 101659. [Google Scholar] [CrossRef]
- Wang, Z.A.; Meng, Q.Y.; Allam, M.; Hu, D.; Zhang, L.L.; Menenti, M. Environmental and anthropogenic drivers of surface urban heat island intensity: A case study in the Yangtze River Delta, China. Ecol. Indic. 2021, 128, 107845. [Google Scholar] [CrossRef]
- Zhou, D.C.; Xiao, J.F.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Acosta, M.P.; Vahdatikhaki, F.; Santos, J.; Hammad, A.; Dor′ee, A.G. How to bring UHI to the urban planning table? A data-driven modeling approach. Sustain. Cities Soc. 2021, 71, 102948. [Google Scholar] [CrossRef]
- Chen, S.Z.; Yu, Z.W.; Liu, M.; Da, L.J.; Faiz, M. Trends of the contributions of biophysical (climate) and socioeconomic elements to regional heat islands. Sci. Rep. 2021, 11, 12696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.G.; Xue, Y.; Martilli, A.; Shen, J.; Chan, P.W. City-scale morphological influence on diurnal urban air temperature. Build. Environ. 2020, 169, 106527. [Google Scholar] [CrossRef]
- Back, Y.; Bach, P.M.; Jasper-Tönnies, A.; Rauch, W.; Kleidorfer, M. A rapid fine-scale approach to modeling urban bioclimatic conditions. Sci. Total Environ. 2021, 756, 143732. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Song, J.; Huang, X.; Wang, Q.; Zhang, C.; Brousse, O.; Chan, P.W. High-resolution regional modeling of urban moisture island: Mechanisms and implications on thermal comfort. Build. Environ. 2022, 207, 108542. [Google Scholar] [CrossRef]
- Zhu, D.; Ooka, R. WRF-based scenario experiment research on urban heat island: A review. Urban Clim. 2023, 49, 101512. [Google Scholar] [CrossRef]
- Feng, Y.; Li, H.; Tong, X.; Chen, L.; Liu, Y. Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China. Glob. Planet Chang. 2018, 167, 24–34. [Google Scholar] [CrossRef]
- Shen, C.H.; Hou, H.; Zheng, Y.Y.; Murayama, Y.J.; Wang, R.C.; Hu, T.G. Prediction of the future urban heat island intensity and distribution based on landscape composition and configuration: A case study in Hangzhou. Sustain. Cities Soc. 2022, 83, 103992. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Huang, X.; Tang, Q.H. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef]
- Yao, L.; Sun, S.; Song, C.X.; Li, J.; Xu, W.T.; Xu, Y. Understanding the spatiotemporal pattern of the urban heat island footprint in the context of urbanization, a case study in Beijing, China. Appl. Geogr. 2021, 133, 102496. [Google Scholar] [CrossRef]
- Adilkhanova, I.; Ngarambe, J.; Yun, G.Y. Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods. Renew. Sust. Energ. Rev. 2022, 165, 112520. [Google Scholar] [CrossRef]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.N.; Meng, Y.; Zhou, Y.; Wang, H.T. Exploring the impact of urban features on the spatial variation of land surface temperature within the diurnal cycle. Sustain. Cities Soc. 2023, 91, 104432. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Lin, J.Y.; Qiu, S.X.; Tan, X.J.; Zhuang, Y.Y. Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods. Build. Environ. 2023, 228, 109910. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Dai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for the spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Xiang, Y.; Huang, C.B.; Huang, X.; Zhou, Z.X.; Wang, X.S. Seasonal variations of the dominant factors for spatial heterogeneity and time inconsistency of land surface temperature in an urban agglomeration of central China. Sustain. Cities Soc. 2021, 75, 103285. [Google Scholar] [CrossRef]
- Lau, T.K.; Chen, Y.C.; Lin, T.P. Application of local climate zones combined with machine learning to predict the impact of urban structure patterns on thermal environment. Urban Clim. 2023, 52, 101731. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Manchado, C.; Roldán-Valcarce, A.; Moscardó, V. ArcUHI: A GIS add-in for automated modelling of the Urban Heat Island effect through machine learning. Urban Clim. 2022, 44, 101203. [Google Scholar] [CrossRef]
- Hu, Y.F.; Dai, Z.X.; Guldmann, J.M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. J. Environ. Manag. 2020, 266, 110424. [Google Scholar] [CrossRef]
- Han, D.R.; An, H.M.; Cai, H.Y.; Wang, F.; Xu, X.L.; Qiao, Z.; Jia, K.; Sun, Z.Y.; An, Y. How do 2D/3D urban landscapes impact diurnal land surface temperature: Insights from block scale and machine learning algorithms. Sustain. Cities Soc. 2023, 99, 104933. [Google Scholar] [CrossRef]
- Hou, H.R.; Longyang, Q.Q.; Su, H.B.; Zeng, R.J.; Xu, T.F.; Wang, Z.H. Prioritizing environmental determinants of urban heat islands: A machine learning study for major cities in China. Int. J. Appl. Earth Obs. 2023, 122, 103411. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.F.; Hu, L.Q.; Chakraborty, T.C.; Wang, Z.H.; Fu, P.; Wang, D.Z.; Liao, W.L.; Huang, F.; Fu, H.Y.; et al. Divergent urbanization-induced impacts on global surface urban heat island trends since 1980s. Remote Sens. Environ. 2023, 295, 113650. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.S.; Zhu, J.; Qi, J.D. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sust. Energ. Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Tang, W.B.; Zhou, J.; Ma, J.; Wang, Z.W.; Ding, L.R.; Zhang, X.D.; Zhang, X. TRIMS LST: A daily 1 km all-weather land surface temperature dataset for China’s landmass and surrounding areas (2000–2022). Earth Syst. Sci. Data 2024, 16, 387–419. [Google Scholar] [CrossRef]
- Abercrombie, S.P.; Friedl, M.A. Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 703–713. [Google Scholar] [CrossRef]
- Yang, L.Q.; Jia, K.; Liang, S.L.; Liu, J.C.; Wang, X.X. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.C.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.L.; Zhao, T.T.; Gao, Y.; Chen, X.D.; Mi, J. GISD30: Global 30m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform. Earth Syst. Sci. Data 2022, 14, 651–664. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef]
- Liang, S.L.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.Q.; Yao, Y.J.; Yuan, W.P.; Zhang, X.T.; Zhao, X.; et al. The Global Land Surface Satellite (GLASS) products suite. Bull. Am. Meteorol. Soc. 2021, 102, E323. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Ge, Q.H.; Ni, K. China Urban Construction Statistical Yearbook–2015: National Urban Population and Construction Land by City; China Statistics Press: Beijing, China, 2015; pp. 52–85. [Google Scholar]
- Hu, Z.J.; Wu, W.J.; Xin, Y.N. China Urban Construction Statistical Yearbook–2020: National Urban Population and Construction Land by City; China Statistics Press: Beijing, China, 2021; pp. 48–83. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies. 2008. Available online: https://www.epa.gov/heat-islands/heat-island-compendium (accessed on 20 October 2023).
- Wang, Z.H. Reconceptualizing urban heat island: Beyond the urban-rural dichotomy. Sustain. Cities Soc. 2022, 77, 103581. [Google Scholar] [CrossRef]
Categories of Variables | Variables | Meaning of Variables |
---|---|---|
Climate factors | LON | Longitude in grid |
LAT | Latitude in grid | |
Geographical factor | ELE | Mean value of elevation in grid |
Topographic variables | RUG | Mean value of roughness in grid |
SLP | Mean value of slope in grid | |
TRI | Mean value of terrain ruggedness index in grid | |
VRM | Mean value of vector ruggedness measure in grid | |
Biophysical parameter | FVC | Fractional vegetation cover in grid |
Urbanization parameter | ISA | Percentage of impervious surface area in grid |
Satellite | SUHI Extent (km2) | SUHI Types | Sample Size | The SUHI Intensity (°C) | The Spatial Extent of SUHIsat Different Intensities (km2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Strong Zones | VulnerableZones | ≥1 °C | ≥1.5 °C | ≥2 °C | ≥3 °C | ≥4 °C | ||||
Terra | 42,328 | Weak | 15 | 0.6 | 0.26 | 6612 | 1305 | 242 | 0 | 0 |
Medium | 8 | 1.63 | 0.75 | 25,237 | 12,990 | 6489 | 725 | 25 | ||
Strong | 11 | 2.73 | 1.28 | 39,528 | 27,694 | 18,863 | 7663 | 1590 | ||
Extreme | 12 | 3.39 | 1.61 | 45,121 | 32,983 | 24,405 | 12,435 | 4322 | ||
Aqua | 38,884 | Weak | 11 | 1.09 | 0.51 | 23,830 | 9000 | 3347 | 474 | 40 |
Medium | 14 | 2.38 | 1.09 | 39,109 | 24,992 | 15,252 | 4237 | 895 | ||
Strong | 11 | 4.08 | 1.83 | 50,078 | 38,798 | 30,591 | 18,467 | 9433 | ||
Extreme | 10 | 5.55 | 2.45 | 56,665 | 45,759 | 38,007 | 26,841 | 18,555 | ||
Terra | 42,328 | Spring | 11 | 2.31 | 1.05 | 35,671 | 22,562 | 14,038 | 4178 | 451 |
Summer | 12 | 3.31 | 1.56 | 44,940 | 32,601 | 24,028 | 12,016 | 4142 | ||
Autumn | 11 | 1.94 | 0.93 | 30,334 | 17,087 | 9203 | 1151 | 52 | ||
Winter | 12 | 0.51 | 0.21 | 2235 | 1043 | 176 | 0 | 0 | ||
Aqua | 38,884 | Spring | 11 | 2.96 | 1.32 | 44,686 | 31,680 | 22,079 | 9067 | 2372 |
Summer | 12 | 5.24 | 2.32 | 55,139 | 44,127 | 36,407 | 25,231 | 16,869 | ||
Autumn | 11 | 3.36 | 1.54 | 45,942 | 34,036 | 25,431 | 12,702 | 4243 | ||
Winter | 12 | 1.11 | 0.54 | 24,286 | 9266 | 3490 | 484 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Xie, Z.; Zhang, L.; Wang, N.; Wang, M.; Hu, J. Machine-Learning-Assisted Characterization of Regional Heat Islands with a Spatial Extent Larger than the Urban Size. Remote Sens. 2024, 16, 599. https://doi.org/10.3390/rs16030599
Du Y, Xie Z, Zhang L, Wang N, Wang M, Hu J. Machine-Learning-Assisted Characterization of Regional Heat Islands with a Spatial Extent Larger than the Urban Size. Remote Sensing. 2024; 16(3):599. https://doi.org/10.3390/rs16030599
Chicago/Turabian StyleDu, Yin, Zhiqing Xie, Lingling Zhang, Ning Wang, Min Wang, and Jingwen Hu. 2024. "Machine-Learning-Assisted Characterization of Regional Heat Islands with a Spatial Extent Larger than the Urban Size" Remote Sensing 16, no. 3: 599. https://doi.org/10.3390/rs16030599
APA StyleDu, Y., Xie, Z., Zhang, L., Wang, N., Wang, M., & Hu, J. (2024). Machine-Learning-Assisted Characterization of Regional Heat Islands with a Spatial Extent Larger than the Urban Size. Remote Sensing, 16(3), 599. https://doi.org/10.3390/rs16030599