Enhancement of Vital Signals for UWB Through-Wall Radar Using Low-Rank and Block-Sparse Matrix Decomposition
Abstract
:1. Introduction
2. Vital Signal Models
3. The LRBSD Algorithm
3.1. Step A: Data Acquisition and Preprocessing
3.1.1. Adaptive Background Subtraction
3.1.2. Linear Trend Suppression
3.1.3. Bandpass Filter
3.2. Step B: Low Rank and Block-Sparse Matrix Decomposition
Algorithm 1. Low-rank, block-sparse-based life signal enhancement algorithm |
Input |
Output |
, , , , , , , , , , |
when |
|
|
when |
|
|
|
|
|
|
|
|
Output: |
3.3. Step C: Transform and Detection
4. Simulation and Analysis
5. Detection Performance in a Through-Wall Situation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Fang, G. A Novel UWB Sampling Receiver and Its Applications for Impulse GPR Systems. IEEE Geosci. Remote Sens. Lett. 2010, 7, 690–693. [Google Scholar] [CrossRef]
- Le, C.; Dogaru, T.; Nguyen, L.; Ressler, M.A. Ultrawideband (UWB) Radar Imaging of Building Interior: Measurements and Predictions. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1409–1420. [Google Scholar] [CrossRef]
- Bernardi, P.; Cicchetti, R.; Pisa, S.; Pittella, E.; Piuzzi, E.; Testa, O. Design, Realization, and Test of a UWB Radar Sensor for Breath Activity Monitoring. IEEE Sens. J. 2014, 14, 584–596. [Google Scholar] [CrossRef]
- Chen, T.C.; Liu, J.H.; Chao, P.Y.; Li, P.C. Ultrawideband Synthetic Aperture Radar for Respiratory Motion Detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3749–3763. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Ye, S.; Fang, G.; Aaron Gulliver, T. Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digit. Signal Process. 2018, 74, 72–93. [Google Scholar] [CrossRef]
- Xue, H.; Liu, M.; Zhang, Y.; Liang, F.; Qi, F.; Chen, F.; Lv, H.; Wang, J.; Zhang, Y. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar. Sensors 2017, 17, 2255. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Qi, F.; Zhang, Y.; Jiao, T.; Liang, F.; Li, Z.; Wang, J. Improved Detection of Human Respiration Using Data Fusion Basedon a Multistatic UWB Radar. Remote Sens. 2016, 8, 773. [Google Scholar] [CrossRef]
- Wu, S.; Tan, K.; Xu, Y.; Chen, J.; Meng, S.; Fang, G. A simple strategy for moving target imaging via an experimental UWB through-wall radar. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 961–965. [Google Scholar]
- Harikesh; Chauhan, S.S.; Basu, A.; Abegaonkar, M.P.; Koul, S.K. Through the Wall Human Subject Localization and Respiration Rate Detection Using Multichannel Doppler Radar. IEEE Sens. J. 2021, 21, 1510–1518. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Barrowes, B.E. Through-Wall Bio-Radiolocation with UWB Impulse Radar: Observation, Simulation and Signal Extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 791–798. [Google Scholar] [CrossRef]
- Liu, L.B.; Liu, M.; Wang, J.Q. Electromagnetic environment comprehension for radar detection of vital signs at China National Training Center for earthquake search & rescue. In Proceedings of the 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, China, 13–16 June 2016; pp. 1–4. [Google Scholar]
- Liang, Z.; Xiong, M.; Chen, J.; Zhao, D.; Yang, D.; Liang, B.; Mo, J. A combined algorithm for non-contact human vital signs monitoring using IR-UWB radar. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Guo, S.; Cui, G.; Kong, L.; Song, Y.; Yang, X. Multipath Analysis and Exploitation for MIMO Through-the-Wall Imaging Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3721–3731. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Han, L.; Li, Y.; Zhang, C. Extraction of Vital Sign Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise for UWB radar. In Proceedings of the 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 12–14 May 2023; pp. 2829–2834. [Google Scholar]
- Hassan, S.I.; Zia, M.Y.I.; Otero, P. Identification of Humans in a Disaster using Radio Frequency Technique. In Proceedings of the 2023 Global Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain, 24–27 January 2023; pp. 1–4. [Google Scholar]
- Hosseini, S.M.A.T.; Amindavar, H.; Amirmazlaghani, M. A New Robust Vital Sign Detection in Complex Environments Using Ultrawideband Radar. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6771–6782. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, S.; Wu, S.; Chen, J.; Fang, G. Vital Sign Detection Method Based on Multiple Higher Order Cumulant for Ultrawideband Radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1254–1265. [Google Scholar] [CrossRef]
- Le, M.; Luong, V.S.; Nguyen, K.D.; Le, T.D.; Le, D.K. Multivariate Signal Decomposition for Vital Signal Extraction using UWB Impulse Radar. In Proceedings of the 2023 IEEE Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, 2–5 July 2023; pp. 290–294. [Google Scholar]
- Kocur, D.; Porteleky, T.; Švecová, M.; Švingál, M.; Fortes, J. A Novel Signal Processing Scheme for Static Person Localization Using M-Sequence UWB Radars. IEEE Sens. J. 2021, 21, 20296–20310. [Google Scholar] [CrossRef]
- Pan, T.; Guo, Y.; Guo, W.; Kang, C. Detection of Vital Sign Based on UWB Radar by a Time Domain Coherent Accumulation Method. IEEE Sens. J. 2023, 23, 17054–17063. [Google Scholar] [CrossRef]
- Nezirovic, A. Stationary clutter- and linear-trend suppression in impulse-radar-based respiratory motion detection. In Proceedings of the 2011 IEEE International Conference on Ultra-Wideband (ICUWB), Bologna, Italy, 14–16 September 2011; pp. 331–335. [Google Scholar]
- Mostafa, M.H.; Chamaani, S.; Sachs, J. Singular Spectrum Analysis-Based Algorithm for Vitality Monitoring Using M-Sequence UWB Sensor. IEEE Sens. J. 2020, 20, 4787–4802. [Google Scholar] [CrossRef]
- Gore, A.D.; Nair, J.; Bynam, K.; Young-Jun, H.; ChangSoon, P. AGC and DCOC algorithms for sliding IF non-coherent ULP wireless receiver. In Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 780–784. [Google Scholar]
- Rovňaková, J.; Kocur, D. Weak signal enhancement in radar signal processing. In Proceedings of the 20th International Conference Radioelektronika 2010, Brno, Czech Republic, 19–21 April 2010; pp. 1–4. [Google Scholar]
- Nanzer, J.A. A Review of Microwave Wireless Techniques for Human Presence Detection and Classification. IEEE Trans. Microw. Theory Tech. 2017, 65, 1780–1794. [Google Scholar] [CrossRef]
- Cao, L.; Wei, R.; Zhao, Z.; Wang, D.; Fu, C. A Novel Frequency-Tracking Algorithm for Noncontact Vital Sign Monitoring. IEEE Sens. J. 2023, 23, 23044–23057. [Google Scholar] [CrossRef]
- Lai, C.P.; Narayanan, R.M.; Ruan, Q.; Davydov, A. Hilbert-Huang transform analysis of human activities using through-wall noise and noise-like radar. IET Radar Sonar Navig. 2008, 2, 244–255. [Google Scholar] [CrossRef]
- Rane, S.A.; Gaurav, A.; Sarkar, S.; Clement, J.C.; Sardana, H.K. Clutter suppression techniques to detect behind the wall static human using UWB radar. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bengaluru, India, 20–21 May 2016; pp. 1325–1329. [Google Scholar]
- Aybat, N.S.; Iyengar, G. An alternating direction method with increasing penalty for stable principal component pursuit. Comput. Optim. Appl. 2015, 61, 635–668. [Google Scholar] [CrossRef]
- St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. Universal Background Subtraction Using Word Consensus Models. IEEE Trans. Image Process. 2016, 25, 4768–4781. [Google Scholar] [CrossRef]
- Vaswani, N.; Bouwmans, T.; Javed, S.; Narayanamurthy, P. Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery. IEEE Signal Process. Mag. 2018, 35, 32–55. [Google Scholar] [CrossRef]
- An, Q.; Wang, S.; Yao, L.; Zhang, W.; Lv, H.; Wang, J.; Li, S.; Hoorfar, A. RPCA-Based High Resolution Through-the-Wall Human Motion Feature Extraction and Classification. IEEE Sens. J. 2021, 21, 19058–19068. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, T. In-Wall Clutter Suppression Based on Low-Rank and Sparse Representation for Through-the-Wall Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 671–675. [Google Scholar] [CrossRef]
- Chau, G.; Li, Y.L.; Jakovljevic, M.; Dahl, J.; Rodríguez, P. Wall clutter removal in Doppler ultrasound using principal component pursuit. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Pan, J.; Ye, S.; Ni, Z.-k.; Shi, C.; Zheng, Z.; Zhao, D.; Fang, G. Enhancement of vital signals based on low-rank, sparse representation for UWB through-wall radar. Remote Sens. Lett. 2022, 13, 98–106. [Google Scholar] [CrossRef]
- Liang, X.; Pan, J.; Zheng, Z.; Ye, S.; Liu, X.; Fang, G. Enhancement of vital signals for UWB through-wall radar using nonconvex regularization. Remote Sens. Lett. 2023, 14, 392–401. [Google Scholar] [CrossRef]
- Gongguo, T.; Nehorai, A. Robust principal component analysis based on low-rank and block-sparse matrix decomposition. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 23–25 March 2011; pp. 1–5. [Google Scholar]
- Wang, H.; Banerjee, A.; Luo, Z.-Q.T. Parallel Direction Method of Multipliers. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Rovnáková, J.; Kocur, D. TOA Estimation and Data Association for Through-Wall Tracking of Moving Targets. J. Wirel. Commun. Netw. 2010, 2010, 420767. [Google Scholar] [CrossRef]
- Gao, Z.; Cheong, L.F.; Wang, Y.X. Block-Sparse RPCA for Salient Motion Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1975–1987. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.C. A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery. IEEE J. Sel. Top. Signal Process. 2007, 1, 564–574. [Google Scholar] [CrossRef]
- Wei, L.; Wijnholds, S.J.; Hurley, P. Robust recovery for aperture synthesis imaging. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3570–3574. [Google Scholar]
- Zhou, T.; Tao, D. Bilateral random projections. In Proceedings of the 2012 IEEE International Symposium on Information Theory Proceedings, Cambridge, MA, USA, 1–6 July 2012; pp. 1286–1290. [Google Scholar]
- Putra, B.; Kurniawan, D. Neural network-based adaptive selection CFAR for radar target detection in various environments. Int. J. Intell. Syst. Technol. Appl. 2019, 18, 377. [Google Scholar]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef]
Algorithm | SNR (dB) |
---|---|
FFT | 6.51 |
AGC | 6.72 |
SVD | 12.15 |
RPCA | 16.77 |
BS-RPCA | 17.01 |
LRBSD | 36.35 |
Algorithm | Target 1 (dB) | Target 2 (dB) |
---|---|---|
FFT | 4.15 | 5.01 |
AGC | 4.14 | 4.98 |
SVD | 8.65 | 10.06 |
LRBSD | 23.09 | 22.85 |
Algorithm | Target (dB) |
---|---|
FFT | 2.49 |
AGC | 2.59 |
SVD | 4.90 |
LRBSD | 11.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Ye, S.; Song, C.; Kong, Q.; Liu, X.; Fang, G. Enhancement of Vital Signals for UWB Through-Wall Radar Using Low-Rank and Block-Sparse Matrix Decomposition. Remote Sens. 2024, 16, 620. https://doi.org/10.3390/rs16040620
Liang X, Ye S, Song C, Kong Q, Liu X, Fang G. Enhancement of Vital Signals for UWB Through-Wall Radar Using Low-Rank and Block-Sparse Matrix Decomposition. Remote Sensing. 2024; 16(4):620. https://doi.org/10.3390/rs16040620
Chicago/Turabian StyleLiang, Xiao, Shengbo Ye, Chenyang Song, Qingyang Kong, Xiaojun Liu, and Guangyou Fang. 2024. "Enhancement of Vital Signals for UWB Through-Wall Radar Using Low-Rank and Block-Sparse Matrix Decomposition" Remote Sensing 16, no. 4: 620. https://doi.org/10.3390/rs16040620
APA StyleLiang, X., Ye, S., Song, C., Kong, Q., Liu, X., & Fang, G. (2024). Enhancement of Vital Signals for UWB Through-Wall Radar Using Low-Rank and Block-Sparse Matrix Decomposition. Remote Sensing, 16(4), 620. https://doi.org/10.3390/rs16040620