Pseudo- -Norm Fast Iterative Shrinkage Algorithm Network: Agile Synthetic Aperture Radar Imaging via Deep Unfolding Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. AgileSAR Signal Model
2.2. Pseudo--Norm FISTA-Net for AgileSAR Imaging
2.2.1. CS Theorem
2.2.2. Pseudo--Norm Regularization Model
2.2.3. AgileSAR Imaging Based on Pseudo--Norm FISTA-Net
- A.
- Network Mapping of Pseudo--Norm FISTA-net
- (1)
- Module: This layer achieves an estimation by solving the standard convex quadratic program and updates the reconstructed image based on the gradient descent operation of the closed-form solution Equation (14), using the output of the previous layer as the input for the current layer. Additionally, the weight is learned through end-to-end training rather than being fixed.
- (2)
- Module: This layer takes advantage of prior scene information held in the previous layer. Bayesian estimation analyzes and deduces an approximately fair penalization rule , which explains the method of applying prior scene information. This reweighting method penalizes the regularization item to be close to -norm to achieve good recovered performance of the -based algorithm; thus, it can be beneficial for the recovery of low SNR targets.
- (3)
- Module: The proximal operator aims to remove the noise and false targets of the previous layer through thresholding in the sparse transform domain. Complex image details are captured by fine-tuning existing sparse transformations. The pseudo--norm FISTA-net aims to learn a more flexible representation and threshold from the training data.
- (4)
- Module: In this layer, a momentum term, which chooses the update weights of two previous results, is introduced to accelerate the convergence rate. Simultaneously, this advantage is further optimized by an autonomously learnable parameter .
- B.
- Network-Based Parameter Constraint
- C.
- Initialization
- D.
- Implementation Details
3. Experiment
3.1. Data Description
3.2. Evaluation Index
3.3. Experimental Results
3.3.1. AgileSAR Imaging under Different Optimization Algorithms
3.3.2. AgileSAR Imaging under Different Undersampling Ratios
3.3.3. AgileSAR Imaging under Different Phase Numbers
3.3.4. AgileSAR Imaging under Different Epoch Numbers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Krieger, G.; Younis, M.; Gebert, N.; Huber, S.; Moreira, A. Advanced concepts for high-resolution wide-swath SAR imaging. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 1–4. [Google Scholar]
- Sikaneta, I.; Gierull, C.H.; Cerutti-Maori, D. Optimum signal processing for multichannel SAR: With application to high-resolution wideswath imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6095–6109. [Google Scholar] [CrossRef]
- Krieger, G. MIMO-SAR: Opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2628–2645. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory. 2005, 51, 4203–4215. [Google Scholar] [CrossRef]
- Donoho, D.L.; Elad, M.; Temlyakov, V.N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 2006, 52, 6–18. [Google Scholar] [CrossRef]
- Baraniuk, R. Compressive sensing. IEEE Signal Process Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, W.; Xiao, P.; Li, C. AgileSAR: Achieving Wide-Swath Spaceborne SAR Based on Time-Space Sampling. IEEE Access 2019, 7, 674–686. [Google Scholar] [CrossRef]
- Tilllmann, A.M.; Pfetsch, M.E. The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 2014, 60, 1248–1259. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Cerrone, C.; Cerull, R.; Golden, B. Carousel greedy: A generalized greedy algorithm with applications in optimization. Comput. Oper. Res. 2017, 85, 97–112. [Google Scholar] [CrossRef]
- Candes, E.; Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Stat. 2007, 35, 2313–2351. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Ji, S.; Xue, Y.; Carin, L. Bayesian Compressive Sensing. IEEE Trans. Signal Process 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Tipping, M.E.; Faul, A.C. Fast marginal likelihood maximization for sparse Bayesian models. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 3–6 January 2003; pp. 3–6. [Google Scholar]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using laplace priors. IEEE Trans. Image Process. 2010, 19, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Arjoune, Y.; Kaabouch, N.; Ghazi, H.E.; Tamtaoui, A. Compressive sensing: Performance comparison of sparse recovery algorithms. In Proceedings of the Annual Computing and Communication Workshop and Conference (CCWC) 2017, Las Vegas, NV, USA, 9–11 January 2017; pp. 1–7. [Google Scholar]
- Joshi, S.; Siddamal, K.V.; Saroja, V.S. Performance analysis of compressive sensing reconstruction. In Proceedings of the 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; pp. 724–729. [Google Scholar]
- Celik, S.; Basaran, M.; Erkucuk, S.; Cirpan, H. Comparison of compressed sensing based algorithms for sparse signal reconstruction. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016. [Google Scholar]
- Xiong, K.; Zhao, G.; Wang, Y.; Shi, G. SPB-Net: A Deep Network for SAR Imaging and Despeckling with DownSampled Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9238–9256. [Google Scholar] [CrossRef]
- Xiong, K.; Zhao, G.; Wang, Y.; Shi, G.; Chen, S. Lq-SPB-Net: A Real-Time Deep Network for SAR Imaging and Despeckling. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5209721. [Google Scholar] [CrossRef]
- Xiong, K.; Zhao, G.; Wang, Y.; Shi, G. SAR Imaging and Despeckling Based on Sparse, Low-Rank, and Deep CNN Priors. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4501205. [Google Scholar] [CrossRef]
- Hershey, J.R.; Roux, J.L.; Weninger, F. Deep Unfolding: Model-Based Inspiration of Novel Deep Architectures. arXiv 2014. [Google Scholar] [CrossRef]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–1837. [Google Scholar]
- You, D.; Xie, J.; Zhang, J. ISTA-Net++: Flexible Deep Unfolding Network for Compressive Sensing. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021. [Google Scholar]
- Zhang, K.; Gool, L.V.; Timofte, R. Deep Unfolding Network for Image Super-Resolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3214–3223. [Google Scholar]
- Xiang, J.; Dong, Y.; Yang, Y. FISTA-Net: Learning A Fast Iterative Shrinkage Thresholding Network for Inverse Problems in Imaging. IEEE Trans. Med. Imaging 2021, 40, 1329–1339. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, Z.; Fan, Y.; Zhang, Z.; Qiu, X.; Zhang, B.; Fu, K.; Wu, Y. HPHR-SAR-Net: Hyperpixel High-Resolution SAR Imaging Network Based on Nonlocal Total Variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8595–8608. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Qiu, X.; Gao, S.; Wang, Y. ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic SAR Imaging with Adaptive Threshold. IEEE Trans. Geosci. Remote Sensing 2023, 61, 4701918. [Google Scholar] [CrossRef]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted L1 Minimization. J. Fourier Anal. Appl. 2007, 14, 877–905. [Google Scholar] [CrossRef]
- Seeger, M.W.; Nickisch, H. Compressed sensing and Bayesian experimental design. In Proceedings of the 25th international conference on Machine Learning (ICML), 5–9 July 2008; pp. 912–919. [Google Scholar]
- Rousset, F.; Ducros, N.; Farina, A.; Valentini, G.; Andrea, C.; Peyrin, F. Adaptive basis scan by wavelet prediction for single-pixel imaging. IEEE Trans. Comput. Imaging 2017, 3, 36–46. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Golub, G.; Loan, C.F.V. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
Parameter | Data |
---|---|
Average PRF (Hz) in the AgileSAR | 381 |
PRF (Hz) in the traditional SAR | 1907 |
Range sampling frequency (MHz) | 40 |
The referred slant range (km) | 888 |
The pulse width (us) | 50 |
The doppler bandwidth (Hz) | 1401 |
Wavelength (mm) | 5.55 |
Velocity (m/s) | 7513 |
Height (km) | 693 |
The squint angle (°) | 0 |
Different Algorithms | NMSE | SSIM | PSNR (dB) | Time (s) | ||
---|---|---|---|---|---|---|
Figure 3 | Optimization-based algorithms | OMP | 0.0042 | 0.9850 | 36.86 | 1.0279 |
-norm optimization | 0.0042 | 0.9850 | 36.86 | 57.6280 | ||
Bayesian-based | 0.0041 | 0.9850 | 36.91 | 33.3824 | ||
Pseudo--norm FISTA-net algorithm | 0.0001 | 0.9957 | 52.88 | 0.0378 | ||
Figure 4 | Optimization-based algorithms | OMP | 1.0046 | 0.0685 | 17.23 | 41.83 |
-norm optimization | 0.7913 | 0.1998 | 18.27 | 2012.1 | ||
Bayesian-based | 0.7249 | 0.1065 | 18.65 | 411.3130 | ||
Pseudo--norm FISTA-net algorithm | 0.0216 | 0.8980 | 33.91 | 2.3124 | ||
Figure 5 | Optimization-based algorithms | OMP | 0.8674 | 0.0263 | 11.39 | 11.10 |
-norm optimization | 0.8129 | 0.0529 | 11.67 | 442.9401 | ||
Bayesian-based | 0.7539 | 0.0842 | 11.99 | 124.1645 | ||
Pseudo--norm FISTA-net algorithm | 0.0615 | 0.7770 | 22.88 | 0.0309 |
Algorithm | Undersampling Ratios | NMSE | SSIM | PSNR (dB) | |
---|---|---|---|---|---|
The first scene | Pseudo--norm FISTA-net algorithm | 30% | 0.0001 | 0.9967 | 53.89 |
20% | 0.0001 | 0.9957 | 52.88 | ||
15% | 0.0135 | 0.9654 | 31.76 | ||
The second scene | Pseudo--norm FISTA-net algorithm | 30% | 0.0126 | 0.9411 | 36.23 |
20% | 0.0216 | 0.8980 | 33.91 | ||
15% | 0.0980 | 0.5457 | 27.34 | ||
The third scene | Pseudo--norm FISTA-net algorithm | 30% | 0.0446 | 0.8308 | 24.27 |
20% | 0.0615 | 0.7770 | 22.88 | ||
15% | 0.2297 | 0.4286 | 17.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Geng, J.; Meng, F.; Zhang, L.
Pseudo-
Chen W, Geng J, Meng F, Zhang L.
Pseudo-
Chen, Wenjiao, Jiwen Geng, Fanjie Meng, and Li Zhang.
2024. "Pseudo-
Chen, W., Geng, J., Meng, F., & Zhang, L.
(2024). Pseudo-